碳納米管增強(qiáng)Cu-Ti復(fù)合材料及其界面的研究
本文選題:碳納米管 切入點(diǎn):復(fù)合材料 出處:《昆明理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:碳納米管(CNTs)與具有眾多獨(dú)特優(yōu)點(diǎn),實(shí)驗(yàn)和理論計算均表明CNTs具有極高的力學(xué)性能,優(yōu)異的導(dǎo)電和導(dǎo)熱性能。因此自CNTs被發(fā)明以來一直是復(fù)合材料理想的增強(qiáng)相之一,目前CNTs及其復(fù)合材料的研究己成為一個極為重要的研究領(lǐng)域。CNTs作為一種理想的增強(qiáng)相,實(shí)驗(yàn)中表現(xiàn)出極高的彈性模量(270-950 GPa)以及抗拉強(qiáng)度(11-63 GPa)。然而在實(shí)際制備的復(fù)合材料中,不同工藝制備的CNTs增強(qiáng)Cu復(fù)合材料的性能存在較大差異,但通常難以充分發(fā)揮CNTs的性能。本試驗(yàn)基于粉末冶金方法制備了碳納米管增強(qiáng)銅-鈦基復(fù)合材料,利用高能球磨發(fā)制備了片狀復(fù)合粉末。利用放點(diǎn)等離子燒結(jié)制備了 CNTs增強(qiáng)Cu-Ti基復(fù)合材料。對復(fù)合材料采用SEM、EDX分析試樣表面形、微觀結(jié)構(gòu)以及元素組成。測試了其拉升強(qiáng)度。采用阿基米德排水測試密度。通過TEM研究了界面的微觀結(jié)構(gòu),研究了界面處碳化物的形成,以及其在基體中的位向關(guān)系。對這些數(shù)據(jù)分析后得到結(jié)論如下:1通過酸化處理制備的碳納米管表面存在大量缺陷,這一缺陷的存在有效的誘導(dǎo)了碳化物在CNTs表面形成。2碳化物的形成使得Ti擴(kuò)散至Cu/CNTs界面區(qū)域,減少了 CNTs和基體間的空隙,能夠促進(jìn)致密的界面的形成,基體和CNTs之間的機(jī)械結(jié)合。3界面處碳化物的形成,使得Cu基體和CNTs之間形成了有效的過渡層,Cu與碳化鈦形成半共格相界。TiC與CNTs間存在共價鍵結(jié)合。這增加了 Cu基體與CNTs之間的界面結(jié)合強(qiáng)度,使得應(yīng)力能夠很好的傳遞至增強(qiáng)相中。4由于基體與碳納米管不同的熱膨脹系數(shù),使得冷卻過程中,基體與碳納米管之間產(chǎn)生應(yīng)力,促使TiC和Cu基體生成大量小角度晶界,提高了界面對位錯的承載能力,提高了小范圍內(nèi)基體的塑性。5當(dāng)碳管含量增加時,形成團(tuán)聚的可能性增加,燒結(jié)過程中,由于時間較短,Cu和Ti不足以擴(kuò)散至碳管團(tuán)聚體的內(nèi)部填充間隙,導(dǎo)致材料內(nèi)部容易形成裂紋,這使得含有高質(zhì)量分?jǐn)?shù)碳管的的復(fù)合材料塑性和強(qiáng)度下降。
[Abstract]:CNTs has many unique advantages. Both experimental and theoretical calculations show that CNTs has excellent mechanical properties, excellent conductivity and thermal conductivity. Therefore, CNTs has been one of the ideal reinforcements for composites since its invention. At present, the research of CNTs and its composites has become a very important research field. As an ideal reinforcement phase, the experimental results show very high elastic modulus (270-950 GPA) and tensile strength of 11-63 GPa.However, in the practical composites, The properties of CNTs reinforced Cu composites prepared by different processes are quite different, but it is usually difficult to give full play to the properties of CNTs. In this experiment, carbon nanotubes reinforced copper-titanium matrix composites were prepared based on powder metallurgy. The flake composite powder was prepared by high energy ball milling, and the CNTs reinforced Cu-Ti matrix composites were prepared by plasma sintering at the point of discharge. The surface shapes of the composites were analyzed by means of SEM edX. Microstructure and elemental composition. Tensile strength was measured. Archimedes drainage density was used. Microstructure of the interface was studied by TEM, and the formation of carbides at the interface was studied. After analyzing these data, it is concluded that there are a lot of defects on the surface of carbon nanotubes prepared by acidizing treatment. The existence of this defect effectively induces the formation of 2.2-carbides on the surface of CNTs, which makes Ti diffuse to the interface area of Cu/CNTs, reduces the void between CNTs and matrix, and can promote the formation of dense interface. The formation of carbides at the interface of mechanical bonding between matrix and CNTs, The formation of an effective transition layer between Cu matrix and CNTs leads to the formation of a semi-coherent phase boundary between Cu and titanium carbide. Tic and CNTs are covalently bonded, which increases the interfacial bonding strength between Cu matrix and CNTs. As a result of the different thermal expansion coefficient between the matrix and the carbon nanotube, the stress between the matrix and the carbon nanotube is produced during the cooling process, which leads to the formation of a large number of small angle grain boundaries between the TiC and Cu matrix. The bearing capacity of interfacial dislocation is improved, and the plasticity of matrix in a small range is improved. When the content of carbon pipe increases, the possibility of forming agglomeration increases, and during the sintering process, Because the short time of Cu and Ti is not enough to diffuse into the inner filling gap of carbon tube aggregates, it is easy to form cracks inside the material, which results in the reduction of plasticity and strength of the composite containing high mass fraction carbon tube.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB333
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊超;李才巨;易健宏;鄒舟;鮑瑞;朱心昆;;碳納米管在鋁基復(fù)合材料中分散的研究進(jìn)展[J];材料導(dǎo)報;2016年17期
2 李海鵬;范佳薇;康建立;趙乃勤;王雪霞;李寶娥;;鋁基體上碳納米管原位均勻合成及其復(fù)合材料的性能(英文)[J];Transactions of Nonferrous Metals Society of China;2014年07期
3 張敬國;汪禮敏;張少明;王林山;張景懷;;銅及銅合金粉末應(yīng)用及研究現(xiàn)狀[J];粉末冶金工業(yè);2013年01期
4 孟振強(qiáng);劉如鐵;熊擁軍;趙福安;李溪濱;;球磨方式對多壁碳納米管形貌和結(jié)構(gòu)的影響[J];中國有色金屬學(xué)報;2012年12期
5 ;Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes[J];International Journal of Minerals Metallurgy and Materials;2012年05期
6 聶俊輝;賈成廠;張亞豐;史娜;李一;;機(jī)械球磨與放電等離子體燒結(jié)制備碳納米管/銅復(fù)合材料[J];粉末冶金工業(yè);2011年05期
7 ;Fabrication,microstructures,and properties of copper matrix composites reinforced by molybdenum-coated carbon nanotubes[J];Rare Metals;2011年04期
8 王偉;陳小華;劉云泉;易斌;顏海梅;;內(nèi)嵌碳納米管銅復(fù)合顆粒的制備[J];機(jī)械工程材料;2011年04期
9 B.ABBASIPOUR;B.NIROUM AND;S.M.MONIR VAGHEFI;;Compocasting of A356-CNT composite[J];Transactions of Nonferrous Metals Society of China;2010年09期
10 宋海洋;查新未;;碳納米管/金復(fù)合材料拉伸力學(xué)性能的分子動力學(xué)模擬[J];稀有金屬材料與工程;2008年07期
,本文編號:1647047
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1647047.html