復(fù)合材料厚壁殼體內(nèi)外協(xié)同固化過程仿真分析
本文選題:纖維復(fù)合材料 切入點(diǎn):厚壁殼體 出處:《哈爾濱理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:管壁較薄的纏繞成型的殼體通常使用傳統(tǒng)的外固化工藝成型。隨著復(fù)合材料殼體工作壓力的提高和特殊工程的需要,厚壁復(fù)合材料殼體也得到進(jìn)一步的應(yīng)用,,如高壓管道、儲(chǔ)能飛輪等等。在采用傳統(tǒng)固化工藝對(duì)厚壁殼體成型時(shí),殼體固化所需加熱時(shí)間過長,因此耗能高、效率低,不但大大提高了成本,而且由于多余樹脂不能及時(shí)排除,因此難以保證產(chǎn)品質(zhì)量。 為實(shí)現(xiàn)厚壁復(fù)合材料殼體的高效優(yōu)質(zhì)固化,本文采用內(nèi)外協(xié)同固化新工藝,即將浸漬過的樹脂纖維按預(yù)定張力、預(yù)定厚度和預(yù)定纏繞速度在芯模上纏繞后,將蒸汽通入到金屬芯模內(nèi),將被加熱金屬芯模的熱量傳遞給纖維樹脂纏繞層,同時(shí)在外部使用碳纖維紅外線石英電熱管對(duì)其加恒溫。新工藝對(duì)于厚壁復(fù)合材料殼體的成型具有明顯的優(yōu)勢(shì):可加快厚壁殼體成型,從而縮短成型時(shí)間;更加有利于纖維持續(xù)浸漬、樹脂內(nèi)氣泡、多余樹脂及固化放熱產(chǎn)生的能量的排出及復(fù)合材料密實(shí);可解決局部先于周圍固化導(dǎo)致的缺膠或分層等質(zhì)量問題。 本文對(duì)采用蒸汽進(jìn)行芯模加熱的內(nèi)外協(xié)同固化成型工藝進(jìn)行了研究,說明了內(nèi)外協(xié)同固化工藝的原理,建立了厚壁殼體內(nèi)外協(xié)同固化過程的傳熱模型和固化動(dòng)力學(xué)模型,利用有限元軟件ANSYS和APDL語言開發(fā)了厚壁殼體內(nèi)外協(xié)同固化過程數(shù)值模擬程序,并以二維有限元模型為例進(jìn)行了實(shí)驗(yàn)驗(yàn)證和數(shù)值模擬,分析殼體內(nèi)外協(xié)同固化過程中溫度和固化度的分布及其變化歷程。以三維有限元模型為例分析殼體內(nèi)外協(xié)同固化過程中應(yīng)變的分布及其變化歷程。對(duì)新工藝的數(shù)值模擬結(jié)果表明:隨著外溫和升溫速率的不斷增大,中心節(jié)點(diǎn)的溫度、固化度和應(yīng)變波動(dòng)較大;隨著纏繞速度的增大,中心節(jié)點(diǎn)的溫度、固化度和應(yīng)變波動(dòng)變小。該研究為內(nèi)外協(xié)同固化工藝的優(yōu)化提供理論依據(jù)。
[Abstract]:The thin winding shell of the pipe wall is usually formed by the traditional external solidification process. With the increase of the working pressure of the composite shell and the need of special engineering, the thick-walled composite shell has been further applied, such as high pressure pipe, Energy storage flywheels and so on. When the traditional curing process is used to form the thick-walled shell, the heating time required for the solidification of the shell is too long, therefore, the energy consumption is high and the efficiency is low, which not only greatly increases the cost, but also because the excess resin can not be eliminated in time. Therefore, it is difficult to guarantee the quality of the product. In order to realize the high efficiency and high quality curing of thick wall composite shell, a new process of internal and external co-curing is adopted in this paper, that is, the impregnated resin fiber is wound on the core mould according to the predetermined tension, the predetermined thickness and the predetermined winding speed. The steam is passed into the metal core mold, and the heat of the heated metal core mold is transferred to the filament resin winding layer. At the same time, the carbon fiber infrared quartz electroheating tube is used to keep the temperature constant. The new technology has obvious advantages for the thick wall composite shell forming: it can accelerate the thick wall shell forming, thus shorten the forming time; It is more favorable to the continuous impregnation of the fiber, the discharge of the energy generated by the bubble in the resin, the excess resin and the curing exothermic heat, and the compactness of the composite material, which can solve the quality problems such as the lack of glue or delamination caused by the local curing before the surrounding curing. In this paper, the internal and external co-curing process of core-die heating with steam is studied, the principle of internal and external co-curing process is explained, and the heat transfer model and curing dynamics model of the inner and outer co-curing process of thick wall shell are established. A numerical simulation program for the cosolidification process of thick wall shell is developed by using finite element software ANSYS and APDL, and the experiment and numerical simulation are carried out by taking the two-dimensional finite element model as an example. The distribution and variation of temperature and degree of solidification in and out of the shell are analyzed. Taking the three-dimensional finite element model as an example, the distribution and variation of strain in the process of co-curing inside and outside the shell are analyzed. The simulation results show that with the increasing of the rate of external temperature and temperature rise, The temperature, curing degree and strain of the central node fluctuate greatly, and the temperature, curing degree and strain fluctuation of the central node become smaller with the increase of winding speed. This study provides a theoretical basis for the optimization of the internal and external co-curing process.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB332
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊正林,陳浩然;層合板在固化全過程中瞬態(tài)溫度場(chǎng)及固化度的有限元分析[J];玻璃鋼/復(fù)合材料;1997年03期
2 寇哲君;戴棣;曹正華;;復(fù)合材料結(jié)構(gòu)固化變形預(yù)測(cè)[J];材料工程;2007年S1期
3 郭戰(zhàn)勝,杜善義,張博明,武湛君,李方,傅求理;先進(jìn)復(fù)合材料用環(huán)氧樹脂的固化反應(yīng)和化學(xué)流變[J];復(fù)合材料學(xué)報(bào);2004年04期
4 譚華,晏石林;熱固性樹脂基復(fù)合材料固化過程的三維數(shù)值模擬[J];復(fù)合材料學(xué)報(bào);2004年06期
5 任明法,王榮國,陳浩然;具有金屬內(nèi)襯復(fù)合材料纖維纏繞容器固化過程的數(shù)值模擬[J];復(fù)合材料學(xué)報(bào);2005年04期
6 張紀(jì)奎;酈正能;關(guān)志東;程小全;劉濤;;復(fù)合材料層合板固化壓實(shí)過程有限元數(shù)值模擬及影響因素分析[J];復(fù)合材料學(xué)報(bào);2007年02期
7 張紀(jì)奎;酈正能;關(guān)志東;程小全;王軍;;熱固性復(fù)合材料固化過程三維有限元模擬和變形預(yù)測(cè)[J];復(fù)合材料學(xué)報(bào);2009年01期
8 孔德群;裴艷敏;邢立業(yè);崔燾;李珍;;儲(chǔ)能飛輪轉(zhuǎn)子用金屬材料的研究現(xiàn)狀[J];儲(chǔ)能科學(xué)與技術(shù);2014年01期
9 陳祥寶;邢麗英;周正剛;;樹脂基復(fù)合材料制造過程溫度變化模擬研究[J];航空材料學(xué)報(bào);2009年02期
10 楊慧;;纖維纏繞復(fù)合材料固化工藝過程數(shù)值研究[J];機(jī)械強(qiáng)度;2008年02期
本文編號(hào):1618313
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1618313.html