摻雜態(tài)PEDOT的熱電性能研究
本文關(guān)鍵詞: 有機(jī)熱電材料 熱電優(yōu)值 電導(dǎo)率 Seebeck系數(shù) 熱導(dǎo)率 出處:《中國(guó)工程物理研究院》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:熱電材料是一類(lèi)可以直接將熱能轉(zhuǎn)化為電能的能源轉(zhuǎn)化材料,由于其無(wú)運(yùn)動(dòng)部件、壽命長(zhǎng)、無(wú)噪聲、環(huán)境友好等優(yōu)勢(shì)而被廣泛關(guān)注。然而目前常用的無(wú)機(jī)熱電材料由于其合成元素稀缺、工業(yè)大規(guī)模合成困難、樣品易碎等因素而難以在生活中被廣泛應(yīng)用。有機(jī)熱電材料相比于無(wú)機(jī)熱電材料具有柔韌性好、合成元素豐富、工業(yè)合成容易、易于大規(guī)模應(yīng)用等優(yōu)勢(shì)而被認(rèn)為是室溫下最具有廣泛應(yīng)用前景的熱電材料。其中導(dǎo)電聚合物由于其較高的電導(dǎo)率以及比大多數(shù)無(wú)機(jī)熱電材料更低的熱導(dǎo)率而被廣泛關(guān)注。作為導(dǎo)電聚合物之一,摻雜態(tài)的PEDOT在溶劑處理下獲得了目前有機(jī)熱電應(yīng)用領(lǐng)域內(nèi)最高的熱電優(yōu)值0.42,較大地促進(jìn)了有機(jī)熱電器件的應(yīng)用步伐。然而摻雜對(duì)PEDOT熱電特性改善的內(nèi)部機(jī)制并不明確,相關(guān)的研究也少見(jiàn)報(bào)道。因此本研究主要基于第一性原理來(lái)探討摻雜對(duì)PEDOT熱電性能影響的內(nèi)部機(jī)制。首先我們基于實(shí)驗(yàn)數(shù)據(jù)構(gòu)建了結(jié)晶化的本征態(tài)PEDOT晶格結(jié)構(gòu)以及各種摻雜態(tài)PEDOT晶格結(jié)構(gòu)的結(jié)構(gòu)模型并基于第一性原理進(jìn)行幾何優(yōu)化;其次基于已優(yōu)化的晶格結(jié)構(gòu),對(duì)其電學(xué)、熱學(xué)、熱電性質(zhì)進(jìn)行了詳細(xì)的研究。獲得如下結(jié)論:(1)本征態(tài)的PEDOT晶格結(jié)構(gòu)呈現(xiàn)出半導(dǎo)體特性,其能帶結(jié)構(gòu)具有一個(gè)0.452eV的小的帶隙;Tos-離子摻雜下的PEDOT晶格結(jié)構(gòu)呈現(xiàn)出金屬特性,費(fèi)米能級(jí)由價(jià)帶頂部被遷移到價(jià)帶內(nèi)部。這種由于摻雜而引起的PEDOT晶格結(jié)構(gòu)性質(zhì)的轉(zhuǎn)變可能是由于以下原因造成:1)Tos-離子摻雜引起了PEDOT晶格內(nèi)電荷的轉(zhuǎn)移和重新分布,PEDOT層中的電荷被轉(zhuǎn)移到被摻雜的Tos-離子上,從而使得PEDOT帶正電荷而增加其電荷載流子濃度;2)Tos-離子摻雜促使了PEDOT鏈內(nèi)的主鏈結(jié)構(gòu)發(fā)生了變化,由本征態(tài)的芳香型結(jié)構(gòu)轉(zhuǎn)變?yōu)榘膈浇Y(jié)構(gòu),因此更有利于電荷載流子沿著鏈延伸的方向進(jìn)行傳輸。(2)Tos-離子摻雜下的PEDOT晶格結(jié)構(gòu)比本征態(tài)的PEDOT具有更高的電導(dǎo)率且電導(dǎo)率的大小與摻雜濃度息息相關(guān)。摻雜濃度越高半導(dǎo)體-金屬轉(zhuǎn)變?cè)絼×?電導(dǎo)率的提升就越明顯。(3)Tos-離子摻雜有效地影響了PEDOT晶格結(jié)構(gòu)Seebeck系數(shù)的大小,一個(gè)適當(dāng)?shù)腡os-離子摻雜濃度對(duì)最優(yōu)化PEDOT的Seebeck系數(shù)尤為重要。由態(tài)密度分析我們發(fā)現(xiàn)12.5% Tos-離子摻雜濃度的PEDOT晶格結(jié)構(gòu)能夠獲得最大的Seebeck系數(shù),從而有助于獲得高的熱電優(yōu)值;同時(shí)相關(guān)的結(jié)論也表明Tos-離子摻雜的濃度并非越高越好,過(guò)高的摻雜濃度可能會(huì)降低Seebeck系數(shù)的大小。(4)Tos分子摻雜表現(xiàn)出完全不同于Tos-離子摻雜的結(jié)果:Tos分子摻并不引起PEDOT晶格內(nèi)電荷的轉(zhuǎn)移和結(jié)構(gòu)轉(zhuǎn)變,同時(shí)Tos分子摻也并不利于提高其電導(dǎo)率和Seebeck系數(shù)。(5)基于能帶理論以及分態(tài)密度的分析,我們發(fā)現(xiàn)PEDOT晶格結(jié)構(gòu)的Seebeck系數(shù)、電導(dǎo)率、熱導(dǎo)率等呈現(xiàn)出明顯的各向異性,其中沿著鏈延伸的方向具有最優(yōu)的傳輸特性,其次是沿著鏈間堆疊的方向,而沿著PEDOT層間堆疊的方向幾乎很難傳輸。此外,為了探索PEDOT在有機(jī)熱電材料實(shí)際應(yīng)用中的制熱制冷效果,我們通過(guò)有限元模擬軟件對(duì)以PEDOT為基礎(chǔ)材料的有機(jī)熱電器件單元進(jìn)行了模擬。結(jié)果發(fā)現(xiàn)有機(jī)熱電器件的熱電制熱制冷效果與PEDOT的熱電性能密切相關(guān),熱電性能越好器件的制熱制冷性能越優(yōu)越;另外,在熱電器件的應(yīng)用中熱電效應(yīng)與熱阻效應(yīng)同時(shí)起到作用,只有在適當(dāng)?shù)臈l件下才能獲得最優(yōu)的熱電制熱制冷效果。
[Abstract]:Thermoelectric material is a kind of can directly convert heat into electricity energy conversion materials, because of its no moving parts, long life, no noise, environmental friendliness and widespread concern. However, the commonly used inorganic thermoelectric materials because of its scarcity of synthetic elements, a large industrial scale synthesis difficult, fragile factors such as sample the difficulty in life has been widely used. Compared to the inorganic organic thermoelectric materials, thermoelectric materials with good flexibility, synthesis of rich elements, the industrial synthesis of easy, easy large-scale applications and is considered to be the most thermoelectric materials has broad application foreground at room temperature. The conductive polymer because of its high conductivity and thermal conductivity of thermoelectric materials is lower than most inorganic the rate was widespread concern. As one of the conductive polymer, doped PEDOT was the highest in the current application of organic solvent treatment in thermal power The ZT value of 0.42, to promote the application of organic thermoelectric devices greatly. However, the internal mechanism of doping on the thermoelectric properties of PEDOT improvement is not clear, the related research is rarely reported. Therefore this research is mainly based on the first principle to explore the internal mechanism of PEDOT doping on the thermoelectric properties of impact. First we constructed based on experimental data the crystallization of the intrinsic lattice structure and structure model of various states of PEDOT doped PEDOT lattice structure and geometry optimization based on first principle; secondly the lattice structure has been optimized based on the electrical, thermal, and thermoelectric properties were studied in detail. The conclusion was as follows: (1) the eigenstates of PEDOT lattice structure showing the characteristics of semiconductor. It has a 0.452eV structure with small band gap; crystal structure of PEDOT doped Tos- by showing the characteristics of metal, the Fermi level by the valence band The top is migrating to the inside. The valence band due to the structural properties of PEDOT doped lattice changes may be due to the following reasons: 1) Tos- ion doping caused the transfer of PEDOT lattice charge and re distribution of charge in the PEDOT layer is transferred to be doped Tos-, which makes PEDOT with positive charge increasing the charge carrier concentration; 2) doped Tos- to PEDOT within the chain backbone structure changed, changed from aromatic structure eigenstates for semiquinoid structure, which is helpful to the charge carrier for transmission along the chain direction. (2) crystal structure of PEDOT doped Tos- under this eigenstates of PEDOT has higher conductivity and the size of conductivity and doping concentration are closely related. The higher the concentration of doped semiconductor metal transition windspeed, enhance the conductivity is more obvious. (3) Tos- ion The effect of doping effectively PEDOT lattice structure Seebeck coefficient, Seebeck coefficient of a proper Tos- doping concentration on the optimization of PEDOT is very important. By the analysis of density of states we found that the crystal structure of PEDOT Tos- 12.5% doping concentration of Seebeck can be the largest coefficient, thus helping to obtain high ZT value; at the same time the results suggest that the concentration of Tos- is not doped higher, high doping concentration may be reduced the Seebeck coefficient (4). The results showed the Tos molecule doping is completely different from the doped Tos-: Tos doped molecules do not cause change of transfer and charge structure of PEDOT lattice, while Tos molecules doped it is not conducive to improve the electrical conductivity and Seebeck coefficient. (5) analysis of the band theory and based on the density of States, we find that the Seebeck coefficients of the PEDOT lattice structure, conductivity, Thermal conductivity shows obvious anisotropy, which has the best transmission characteristics along the chain direction, then along the chain between the stacking direction, and along the PEDOT layer stack direction is almost difficult to transfer. In addition, in order to explore PEDOT actual heating and cooling effect in organic thermoelectric materials, we is simulated by the finite element software unit of organic thermoelectric devices based on PEDOT material. The results showed that the closely related thermoelectric properties of thermoelectric refrigerating effect and PEDOT organic thermoelectric devices, heating and cooling performance of thermoelectric devices better performance more superior; in addition, the application of thermoelectric devices in thermoelectric and thermal resistance effect at the same time play a role only in appropriate conditions in order to obtain the thermoelectric refrigerating effect is optimal.
【學(xué)位授予單位】:中國(guó)工程物理研究院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TB34
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鞠佳彤;田琳;陳瑩;唐勁天;;聚吡咯滌綸導(dǎo)電織物的制備及其表征[J];紡織學(xué)報(bào);2013年11期
2 Bin Zheng;Yuanhua Lin;Jinle Lan;Xiaoping Yang;;Thermoelectric Properties of Ca_3Co_4O_9/Polyaniline Composites[J];Journal of Materials Science & Technology;2014年04期
3 李俊杰;賈小樂(lè);王大剛;王雷;;聚苯胺/石墨/碳納米管復(fù)合熱電材料的制備與表征[J];材料導(dǎo)報(bào);2014年08期
4 翟瀅皓;張勇;;橡膠吸波材料的研究進(jìn)展[J];高分子通報(bào);2014年05期
5 Rabia Sattar;Ayesha Kausar;Muhammad Siddiq;;Thermal, Mechanical and Electrical Studies of Novel Shape Memory Polyurethane/Polyaniline Blends[J];Chinese Journal of Polymer Science;2015年09期
6 吳利青;徐德輝;熊斌;;微型熱電能量采集器的研究進(jìn)展[J];半導(dǎo)體技術(shù);2015年10期
7 李志元;李潤(rùn)明;石家華;;納米聚苯胺及聚苯胺/金復(fù)合材料的制備與表征[J];化學(xué)研究;2014年02期
8 趙君;黃仁亮;齊崴;王躍飛;蘇榮欣;何志敏;;苯丙氨酸二肽類(lèi)分子自組裝:分子設(shè)計(jì)、結(jié)構(gòu)調(diào)控與材料應(yīng)用[J];化學(xué)進(jìn)展;2014年09期
9 張標(biāo);汪圢;崔旭東;;導(dǎo)電聚合物熱電材料研究進(jìn)展[J];化學(xué)通報(bào);2015年10期
10 趙麗娟;孫希靜;趙敬紅;胡楠;李權(quán);;聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸類(lèi)熱電材料研究進(jìn)展[J];四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年04期
相關(guān)會(huì)議論文 前1條
1 楊國(guó)程;張林龍;郭歆欣;劉磊;宋通;;3,4-噻吩二甲酸修飾金電極檢測(cè)撲熱息痛[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第04分會(huì):納米生物傳感新方法[C];2014年
相關(guān)博士學(xué)位論文 前10條
1 陳勇;聚苯胺和導(dǎo)電銀納米結(jié)構(gòu)的形貌控制制備[D];武漢理工大學(xué);2013年
2 文陽(yáng)平;電子型導(dǎo)電高分子生化傳感器的構(gòu)建及其農(nóng)業(yè)應(yīng)用基礎(chǔ)研究[D];江西農(nóng)業(yè)大學(xué);2013年
3 翟瀅皓;碳納米管和稀土化合物改性氫化丁腈橡膠復(fù)合材料的結(jié)構(gòu)與吸波性能研究[D];上海交通大學(xué);2013年
4 趙瑞陽(yáng);偶氮苯類(lèi)光響應(yīng)聚合物的設(shè)計(jì)、合成與性能研究[D];吉林大學(xué);2014年
5 謝玉娟;聚苯胺—銀納米電纜陣列生物傳感器性能研究[D];天津大學(xué);2013年
6 仇偉;納米聚苯胺及其金納米復(fù)合材料的可控制備及表征[D];重慶大學(xué);2014年
7 李明;離子液體的構(gòu)建及在非水生物催化合成天然香料中的應(yīng)用[D];江南大學(xué);2014年
8 谷紅波;聚苯胺及其納米復(fù)合材料巨磁阻性能研究[D];哈爾濱工業(yè)大學(xué);2013年
9 翟東媛;溝槽式肖特基勢(shì)壘二極管電學(xué)性能研究[D];南京大學(xué);2014年
10 王雪鳳;XIAP-BIR3蛋白和雙酚A電化學(xué)生物傳感器的設(shè)計(jì)研究[D];蘭州大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 李盼盼;以二肽復(fù)合材料自組裝為基礎(chǔ)的電化學(xué)生物傳感器研究[D];北京化工大學(xué);2013年
2 許麗莉;納米材料新型生物傳感器在生物樣品檢測(cè)中的應(yīng)用研究[D];華東師范大學(xué);2013年
3 唐雪艷;新型聚苯撐乙炔類(lèi)共軛聚合物的合成以及熒光傳感研究[D];湖南師范大學(xué);2013年
4 袁文娟;苯胺衍生物的原位紫外—可見(jiàn)光譜電化學(xué)研究[D];上海師范大學(xué);2013年
5 韓曉園;基于共軛有機(jī)物和無(wú)機(jī)物納米材料異質(zhì)結(jié)太陽(yáng)能電池的制備及表征[D];蘇州大學(xué);2013年
6 李玉平;基于電活性敏感膜放大效應(yīng)的分子印跡電化學(xué)傳感器的研制[D];桂林理工大學(xué);2012年
7 王力;以水溶性高分子為模板電化學(xué)聚合制備聚吡咯微/納米結(jié)構(gòu)[D];濟(jì)南大學(xué);2013年
8 白志敏;基于聚(5-醛基吲哚)功能材料的生物傳感器研制及應(yīng)用[D];青島科技大學(xué);2013年
9 路林超;一步法制備導(dǎo)電高分子聚吡咯/貴金屬納米復(fù)合材料[D];寧波大學(xué);2013年
10 王瀟漾;功能高分子材料的合成和熱電性能研究[D];華東理工大學(xué);2014年
,本文編號(hào):1555532
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1555532.html