磁性氧化石墨烯的制備及其對環(huán)境水樣中酚類物質(zhì)的殘留分析和吸附性能研究
本文關(guān)鍵詞: 磁性納米復(fù)合物 磁性固相萃取 酚類污染物 吸附 高效液相色譜 出處:《華中師范大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:環(huán)境中污染物往往以痕量水平存在其中,且樣品基質(zhì)復(fù)雜,因此需要采取萃取分離、凈化、富集等前處理手段去除基質(zhì)干擾,提高目標(biāo)分析物的檢測靈敏度。液液萃取(LLE)和固相萃取(SPE)是人們常用的樣品前處理技術(shù)。然而,液液萃取耗時,需要大量的有毒有機(jī)溶劑。固相萃取通常比液液萃取消耗的有機(jī)溶劑少,但耗時、價格相對昂貴。近年來興起了一種基于固相萃取的磁性固相萃取技術(shù)(Magnetic solid-phase extraction,MSPE)。此技術(shù)克服了傳統(tǒng)固相萃取裝柱和樣品上樣的繁瑣和耗時、吸附劑用量大等缺點(diǎn)。磁性納米材料具有良好的磁響應(yīng)性、粒徑小和比表面積大等優(yōu)點(diǎn),使其可以用于分離富集環(huán)境中的酚類污染物。本論文旨在制備新型的磁性納米材料和發(fā)展磁性固相萃取(MSPE)技術(shù)。通過核殼結(jié)構(gòu)的磁性鐵納米線(Fe@Fe_2O_3)與氧化石墨烯(GO)之間的靜電相互作用,成功制備了磁性Fe@Fe_2O_3/G復(fù)合納米粒子,并將其用于環(huán)境水樣中酚類物質(zhì)的殘留分析和吸附性能研究。內(nèi)容如下:1.采用改進(jìn)的Hummer方法制備了 GO,采用文獻(xiàn)的方法制備了 Fe@Fe203鐵納米線,通過GO與Fe@Fe_2O_3之間靜電相互作用,成功地制備了磁性Fe@Fe203/GO復(fù)合納米粒子。Fe@Fe_2O_3,GO和磁性Fe@Fe_2O_3/GO復(fù)合納米粒子的結(jié)構(gòu)、磁性和微孔結(jié)構(gòu)采用掃描電鏡(SEM)、傅里葉紅外光譜(FTIR)、透射電鏡(TEM)、磁化強(qiáng)度(VSM)、X射線粉末衍射(XRD)、Zeta電位、氮?dú)馕矫摳角(BET)表征。2.以Fe@Fe_2O_3/GO作為磁性固相萃取的吸附劑,磁性固相萃取結(jié)合高效液相色譜法檢測環(huán)境水樣中的三種內(nèi)分泌干擾素酚類物質(zhì)。對吸附劑的類型和用量,樣品溶液pH,萃取時間、解吸液種類及體積、材料的穩(wěn)定性等作了深入研究。結(jié)果表明:三種酚類分析物在0.5-100 ng/mL時具有較好的線性關(guān)系,檢出限(LODs)(S/N = 3)為0.08-0.10 ng/mL。日內(nèi)和日間相對標(biāo)準(zhǔn)偏差(RSDs)小于7.5%。南湖水和垃圾水中未檢測出三種酚類,在工廠水中檢測到了雙酚A和2,4-二氯酚,濃度分別為1.32,0.64 ng/mL。南湖水,垃圾水,工廠水加標(biāo)濃度為5,10,50 ng/mL時,回收率在82%-94.8%之間。該方法成功應(yīng)用于環(huán)境水樣中三種酚類殘留的分析檢測。3.以BPA,DCP作為酚類的代表,研究Fe@Fe_2O_3/GO的吸附性能。通過對吸附時間,溫度,pH和離子強(qiáng)度等影響吸附效率的因素進(jìn)行考察。結(jié)果表明:在1h時,吸附達(dá)到平衡,動力學(xué)數(shù)據(jù)符合擬二級吸附動力模型;在研究范圍內(nèi),堿性,加鹽條件下均不利于吸附;Fe@Fe203/GO對BPA,DCP的吸附是個自發(fā)的放熱過程,吸附量隨著溫度的增加而減小,吸附熱力學(xué)數(shù)據(jù)符合Langmuir吸附模型,是均勻的單分子層吸附;在298.15K條件下,Langmuir吸附模型計算的Fe@Fe203/GO對BPA,DCP的最大吸附容量分別為88.5mg/g,125mg/g,高于文獻(xiàn)中其它的碳質(zhì)材料對BPA,DCP的吸附容量。
[Abstract]:The pollutants in the environment often exist at trace levels and the sample matrix is complex. Therefore, it is necessary to remove matrix interference by pre-treatment, such as extraction, separation, purification, enrichment and so on. Improving the detection sensitivity of target analytes. Liquid-liquid extraction (Lle) and solid phase extraction (SPE) are commonly used sample pretreatment techniques. However, liquid-liquid extraction is time consuming. A large number of toxic organic solvents are required. Solid-phase extraction usually consumes less organic solvents than liquid-liquid extraction, but takes less time than liquid-liquid extraction. In recent years, a magnetic solid-phase extraction technique based on solid phase extraction (SPE) has been developed. The magnetic nanomaterials have the advantages of good magnetic response, small particle size and large specific surface area. The aim of this thesis is to prepare new magnetic nanomaterials and develop magnetic solid phase extraction (MSPE) technology. FeFeFe2O3 and graphene oxide (GFAC) were prepared by core-shell structure magnetic iron nanowires (FeFe2O3) and graphene oxide (GOO). The electrostatic interaction between them, The magnetic Fe@Fe_2O_3/G composite nanoparticles were successfully prepared and used for the residue analysis and adsorption study of phenols in environmental water samples. The contents are as follows: 1. GOO was prepared by improved Hummer method, and Fe@Fe203 iron nanowires were prepared by the method of literature. By electrostatic interaction between go and Fe@Fe_2O_3, the structures of magnetic Fe@Fe203/GO composite nanoparticles, FeFeR\ + +\ +\ {2} O\ +\ {3} O\ + 3Go\ +\ +\ {{$}}\ $_ 2\ ^ 2\ +\%\ +\ {. The magnetic and micropore structures were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and X-ray powder diffraction (XRD), and nitrogen adsorption and desorption curve (BET). Fe@Fe_2O_3/GO was used as adsorbent for magnetic solid phase extraction (SPE). Magnetic solid phase extraction (SPE) combined with high performance liquid chromatography (HPLC) was used to determine three kinds of endocrine interferon phenols in environmental water samples. The results show that the three phenolic analytes have a good linear relationship at 0.5-100 ng/mL. The detection limit was 0.08-0.10 ng / mL 路day and day relative standard deviation (RSDs) < 7.5. No three phenols were detected in South Lake water and garbage water. Bisphenol A and 2o 4-dichlorophenol were detected in factory water with concentrations of 1.32 鹵0.64 ng / mL 路south lake water, solid waste water, and waste water, respectively. The recovery rate was between 82% and 94.8% when the standard concentration of factory water was 5 ~ 10 ~ 10 ~ 50 ng/mL. The method was successfully applied to the determination of three phenols residues in environmental water samples. The adsorption performance of Fe@Fe_2O_3/GO was studied by using BPADCP as the representative of phenols. The temperature, pH and ionic strength were investigated. The results showed that the adsorption reached equilibrium at 1 h, and the kinetic data were in accordance with the pseudo-second-order adsorption kinetic model. The adsorption of BPADCP by Febo Fe203 / go is a spontaneous exothermic process, and the adsorption amount decreases with the increase of temperature. The adsorption thermodynamic data accord with the Langmuir adsorption model and are homogeneous monolayer adsorption. At 298.15K, the maximum adsorption capacity of Fe@Fe203/GO for BPA-DCP is 88.5 mg / g / g, which is higher than that of other carbon materials in the literature.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X832;O658.2;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張允閣;金淮;;用磁性鐵礦占有率代替磁性率的商討[J];金屬礦山;1975年05期
2 龐學(xué)詩;;磁析收率代替磁性率的建議及應(yīng)用[J];湖南冶金;1982年02期
3 孫謙;;細(xì)紗磁性大鐵輥快速測磁儀及其應(yīng)用[J];棉紡織技術(shù);1984年07期
4 龐艷秋;何貴;;鐵礦石物相中磁性鐵測試方法的改進(jìn)[J];四川地質(zhì)學(xué)報;2009年S2期
5 譚振南,劉樹杰,蘆致錕;鐵礦石中磁性鐵測定方法[J];江西冶金;1985年02期
6 Л.А.德羅布?xì)J科;В.В.涅丘納耶娃;Л.А.庫茲涅佐娃;劉明鑒;;用磁性預(yù)測含鈦磁鐵精礦的質(zhì)量[J];國外金屬礦山;1991年06期
7 朱云太,李春玉,沈廣鑫;銅冶煉渣中磁性鐵的分析方法探討[J];銅業(yè)工程;2004年03期
8 Д.Фроммер;陳子鳴;;用選擇性凝聚浮選法處理非磁性鐵燧巖[J];國外金屬礦選礦;1973年09期
9 翁漢源;;也談應(yīng)用磁性鐵礦占有率代替磁性率的看法[J];金屬礦山;1976年04期
10 Я.В.Титин;魯樺;;尾礦漿磁性鐵含量自動檢測裝置的應(yīng)用[J];國外金屬礦選礦;1981年04期
相關(guān)會議論文 前2條
1 于長義;;磁性鐵精粉提質(zhì)降硅試驗(yàn)[A];2009年金屬礦產(chǎn)資源高效選冶加工利用和節(jié)能減排技術(shù)及設(shè)備學(xué)術(shù)研討與技術(shù)成果推廣交流暨設(shè)備展示會論文集[C];2009年
2 于長義;;磁性鐵精粉提質(zhì)降硅[A];第十六屆六省礦山學(xué)術(shù)交流會論文集[C];2009年
相關(guān)重要報紙文章 前1條
1 陳丹;普通材料可“拉伸”成新型磁性鐵電體[N];科技日報;2010年
相關(guān)碩士學(xué)位論文 前10條
1 舒琳;低品位錳礦及其改性磁性鐵錳復(fù)合物對砷(Ⅲ)吸附性能的研究[D];廣西大學(xué);2016年
2 江林;磁性沸石去除水中磷的性能和機(jī)理研究[D];合肥工業(yè)大學(xué);2016年
3 李鳳;磁性氧化石墨烯的制備及其對環(huán)境水樣中酚類物質(zhì)的殘留分析和吸附性能研究[D];華中師范大學(xué);2015年
4 毛景;高比表面積磁性碳材料的制備以及對磺胺類抗生素的吸附性能研究[D];南京理工大學(xué);2013年
5 楊景興;磁性稀土摻雜氧化釔納米復(fù)合物的合成和性能研究[D];吉林大學(xué);2011年
6 周興;磁性納米橡膠的制備與性能研究[D];中北大學(xué);2009年
7 王加;磁性介孔炭的合成及蛋白藥物吸附與釋放性能初步研究[D];廣東藥學(xué)院;2013年
8 王英會;納米鐵氧體的制備及其在磁性納米藥物載體中的應(yīng)用研究[D];南京理工大學(xué);2006年
9 伍三蘭;5-氟尿嘧啶磁靶向亞微球制備及其性質(zhì)研究[D];華中科技大學(xué);2007年
10 朱展望;量子點(diǎn)和磁性納米/亞微米粒子的制備及其在2,4-二氯苯氧乙酸檢測中的應(yīng)用探討[D];上海師范大學(xué);2012年
,本文編號:1541285
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1541285.html