細(xì)通道夾套內(nèi)納米流體強(qiáng)化傳熱實(shí)驗(yàn)研究
本文關(guān)鍵詞: 細(xì)通道 納米流體 傳熱 綜合性能 實(shí)驗(yàn) 出處:《廣西大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著集成技術(shù)的提高,化工、食品等行業(yè)的過(guò)程設(shè)備越來(lái)越趨于小型化。小型化設(shè)備會(huì)導(dǎo)致熱流密度的增加,因此必須配以尺寸合適、質(zhì)量輕盈、效率高的傳熱裝置以滿足這一變化。彎曲微細(xì)通道內(nèi)因流體流動(dòng)會(huì)產(chǎn)生強(qiáng)化傳熱的二次流而廣泛應(yīng)用于傳熱設(shè)備中。此外,采用高傳熱系數(shù)的納米流體替代傳統(tǒng)傳熱工質(zhì)也是進(jìn)一步增強(qiáng)微小型換熱器換熱性能的有效方法。本文采用實(shí)驗(yàn)方法研究了 2種細(xì)通道夾套內(nèi)不同流體工質(zhì)的傳熱和流動(dòng)特性。實(shí)驗(yàn)工質(zhì)為有無(wú)分散劑添加的質(zhì)量濃度為0.05%和0.1%的Ti02—去離子水納米流體及基液工質(zhì)。通過(guò)對(duì)比分析納米顆粒質(zhì)量濃度和有無(wú)分散劑添加對(duì)彎曲細(xì)通道夾套傳熱和流動(dòng)特性的影響。此外,在每種納米流體實(shí)驗(yàn)后對(duì)實(shí)驗(yàn)回路和夾套清洗前后分別采用去離子水進(jìn)行重復(fù)性實(shí)驗(yàn)得到相關(guān)數(shù)據(jù)與基液進(jìn)行對(duì)比分析。結(jié)果表明:1)對(duì)于螺旋細(xì)通道夾套而言,表面摩擦系數(shù)f值隨著質(zhì)量濃度的提高而增加,分散劑能有效提高摩擦系數(shù);傳熱方面,質(zhì)量濃度為0.05%有分散劑添加的納米流體的傳熱性能最好,而質(zhì)量濃度為0.05%無(wú)分散劑添加的納米流體傳熱性能較差。但對(duì)濃度0.1%的2種納米流體而言,其平均Nu數(shù)差別不大;重復(fù)性實(shí)驗(yàn)測(cè)得的平均Nu數(shù)與表面摩擦系數(shù)f均高于基液,且清洗后實(shí)驗(yàn)測(cè)得的平均Nu數(shù)與表面摩擦系數(shù)f均高于清洗前。納米流體中質(zhì)量濃度為0.05%有分散劑添加的納米流體的綜合性能最好,在質(zhì)量濃度0.1%納米流體實(shí)驗(yàn)后清洗實(shí)驗(yàn)回路和夾套進(jìn)行的重復(fù)性實(shí)驗(yàn)的綜合性能最好。2)對(duì)于周向平行彎曲細(xì)通道夾套而言,分散劑會(huì)提高納米流體的進(jìn)出口壓降和平均Nu數(shù),但納米流體無(wú)論有無(wú)分散劑添加,實(shí)驗(yàn)測(cè)得的平均Nu數(shù)均都不大于基液;重復(fù)性實(shí)驗(yàn)測(cè)得的進(jìn)出口壓降和平均Nu數(shù)均是清洗后大于清洗前,但是進(jìn)出口壓降均大于基液,而Nu數(shù)均小于基液;質(zhì)量濃度為0.05%有分散劑添加的納米流體的綜合性能最好,而在質(zhì)量濃度0.05%納米流體實(shí)驗(yàn)后清洗實(shí)驗(yàn)回路和夾套進(jìn)行的重復(fù)性實(shí)驗(yàn)的綜合性能最好。根據(jù)實(shí)驗(yàn)數(shù)據(jù)分別對(duì)2種細(xì)通道夾套的表面摩擦系數(shù)f、平均Nu數(shù)擬合了經(jīng)驗(yàn)公式。
[Abstract]:With the improvement of integration technology, process equipment in chemical, food and other industries is becoming more and more miniaturized. Miniaturization equipment will lead to an increase in heat flux, so it must be matched with appropriate size and light quality. Efficient heat transfer devices are widely used in heat transfer equipment due to the secondary flow of fluid flow, which enhances heat transfer, in curved microchannels. It is also an effective method to improve the heat transfer performance of micro heat exchanger by using nanometer fluid with high heat transfer coefficient instead of traditional heat transfer medium. In this paper, two kinds of fluid working fluids in the jacket of fine channel are studied experimentally. Heat transfer and flow characteristics. Experimental fluids for Ti02-deionized water Nanofluids with or without dispersants of 0.05% and 0.1% mass concentrations and working fluids for base solution. The bending effect of nano-particle mass concentration and dispersant added or not is analyzed by comparison and analysis. Effects of heat transfer and flow characteristics of fine channel jackets; in addition, After each kind of nanoscale fluid experiment, the experimental loop and jacket were tested with deionized water before and after cleaning, and the relative data were compared with the base solution. The results showed that: 1) for the spiral fine channel jacket, The surface friction coefficient f increases with the increase of mass concentration, and dispersant can effectively increase the friction coefficient. In heat transfer, the heat transfer performance of nano-fluid with mass concentration of 0.05% dispersant is the best. However, the average Nu number of the two nano-fluids with concentration 0.1% is not different, the average Nu number and the surface friction coefficient f measured by repetitive experiments are higher than those of the base solution, while the heat transfer performance of the nano-fluid with mass concentration of 0.05% dispersant is poor, but the average Nu number of the two kinds of nano-fluids with 0.1% concentration is not different from that of the base solution. After cleaning, the average Nu number and the surface friction coefficient f were higher than those before cleaning. The nano-fluid with 0.05% mass concentration and dispersant had the best comprehensive properties, and the average Nu number and the surface friction coefficient f were higher than those before cleaning. After the mass concentration 0.1% nanoscale fluid experiment, the comprehensive performance of the cleaning test loop and the jacket was the best. 2) for the circumferential parallel bending fine channel jacket, the dispersant could increase the pressure drop and the average Nu number of the nano-fluid inlet and outlet. However, the average number of Nu measured by experiments was not larger than that of base solution, and the pressure drop of inlet and outlet and the average number of Nu measured by repetitive experiments were higher than those before cleaning, but the pressure drop of inlet and outlet was larger than that of base liquid. The Nu number is smaller than the base solution, and the nano-fluid with dispersant 0.05% has the best comprehensive properties. The experimental loop and jacket have the best comprehensive performance after the mass concentration 0.05% nanoscale fluid experiment. According to the experimental data, the surface friction coefficient f and the average Nu number of the two kinds of fine channel jackets are fitted with the empirical formula.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱禮;馮振飛;何榮偉;林清宇;覃杏珍;覃宇奔;黃祖強(qiáng);;并聯(lián)細(xì)通道夾套內(nèi)流量分配、流場(chǎng)及阻力特性研究[J];廣西大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年03期
2 朱禮;林清宇;馮振飛;何榮偉;劉鵬輝;;帶次流道的周向平行彎曲細(xì)通道夾套熵產(chǎn)研究[J];輕工機(jī)械;2016年02期
3 馮振飛;何榮偉;朱禮;林清宇;覃杏珍;覃宇奔;黃祖強(qiáng);;周向平行細(xì)通道夾套的換熱特性[J];過(guò)程工程學(xué)報(bào);2015年06期
4 李雅俠;董國(guó)先;吳劍華;張先珍;;反應(yīng)釜內(nèi)螺旋半圓管夾套內(nèi)流體的湍流換熱性能及熵產(chǎn)分析[J];過(guò)程工程學(xué)報(bào);2013年04期
5 黃祖強(qiáng);王楠;胡華宇;江道海;;機(jī)械活化強(qiáng)化甘蔗渣鋁酸酯表面改性[J];化工學(xué)報(bào);2011年07期
6 李雅俠;吳劍華;戰(zhàn)洪仁;王翠華;;釜外和釜內(nèi)螺旋半圓管夾套內(nèi)流體流動(dòng)與換熱特性(英文)[J];Chinese Journal of Chemical Engineering;2011年02期
7 李雅俠;吳劍華;龔斌;戰(zhàn)洪仁;;螺旋半圓管夾套內(nèi)湍流流動(dòng)與傳熱的數(shù)值模擬[J];過(guò)程工程學(xué)報(bào);2010年04期
8 陳曉英;徐誠(chéng);;臥式反應(yīng)釜螺旋導(dǎo)流夾套傳熱性能研究[J];化工機(jī)械;2010年03期
9 劉靜;微米/納米尺度熱科學(xué)與工程學(xué)中的若干重要問(wèn)題及進(jìn)展[J];物理;2001年07期
10 過(guò)增元;國(guó)際傳熱研究前沿──微細(xì)尺度傳熱[J];力學(xué)進(jìn)展;2000年01期
相關(guān)博士學(xué)位論文 前2條
1 周明正;銀納米流體熱物性及其在微針肋熱沉中強(qiáng)化傳熱研究[D];北京工業(yè)大學(xué);2012年
2 邵莉;R134a在臥式螺旋管內(nèi)的兩相流動(dòng)與傳熱特性研究[D];山東大學(xué);2009年
,本文編號(hào):1506554
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1506554.html