天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 材料論文 >

鐵氧體基復(fù)合納米材料的制備及在超級(jí)電容器中的應(yīng)用

發(fā)布時(shí)間:2018-02-10 16:37

  本文關(guān)鍵詞: 鐵氧體 聚鄰苯二胺 氧化錳 超級(jí)電容器 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:超級(jí)電容器,又稱為電化學(xué)電容器(EC),是一種新型的電能存儲(chǔ)裝置,其能量密度比電池低得多,而保質(zhì)期和使用壽命卻要比電池長(zhǎng)得多。超級(jí)電容器的開發(fā)和研究主要是為了取代脈沖電池,這主要是因?yàn)殡姵氐墓β、保質(zhì)期和循環(huán)壽命相對(duì)而言較短,而不能滿足如今要求越來(lái)越高的應(yīng)用程序。隨著技術(shù)的發(fā)展,研究者們正在大力地研究超級(jí)電容器,尤其是其電極材料,這主要是因?yàn)殡姌O材料是決定超級(jí)電容器綜合性能的重要因素。目前超級(jí)電容器電極材料主要有以下幾種:碳材料、金屬氧化物、導(dǎo)電聚合物以及三種材料的復(fù)合材料。在以上背景下,本論文以高性能超級(jí)電容器的設(shè)計(jì)和研究為目標(biāo),主要開展了以下幾個(gè)工作:(1)本文通過(guò)水熱法成功制備出了Mn~(2+)摻雜的Fe_3O_4納米微球,其中以FeCl_3.6H_2O為唯一鐵源,二氯化錳為摻雜劑,乙酸鈉為沉淀劑,而乙二醇為還原劑和溶劑。采用透射電子顯微鏡(TEM)、掃描電子顯微鏡(SEM)和XRD對(duì)其結(jié)構(gòu)進(jìn)行了表征。并且通過(guò)控制反應(yīng)時(shí)間,研究了Fe_3O_4納米微球的成核和生長(zhǎng)機(jī)制;以KOH為電解液,研究了所制備的Mn摻雜的Fe_3O_4納米微球的電化學(xué)性能。結(jié)果表明:Mn的摻雜量對(duì)Fe_3O_4納米微球的電化學(xué)性質(zhì)有一定的影響。其中,當(dāng)Mn~(2+)摻雜量為1.5 mmol時(shí),Fe_3O_4-Mn-1.5的電化學(xué)性能最佳:在電流密度為1 A·g~(-1)時(shí),比電容高達(dá)292.5 F·g~(-1),當(dāng)電流密度為3.5 A·g~(-1)時(shí),比電容仍能達(dá)到121 F·g~(-1),出色的循環(huán)穩(wěn)定性(循環(huán)600圈后,電容仍還有83%)。(2)聚苯胺及其衍生物是非常重要的導(dǎo)電聚合物,它們?cè)陔娀瘜W(xué),聚合物樹脂等領(lǐng)域有廣泛的應(yīng)用。為此,本論文以六水三氯化鐵為唯一鐵源和氧化劑、氨水為沉淀劑和摻雜劑,通過(guò)一鍋法制備了Fe_3O_4@聚鄰苯二胺(POPD-Fe)納米復(fù)合材料。利用掃描電鏡、透射電鏡、紅外光譜、X射線粉末衍射、N2吸附脫附、熱重分析等手段對(duì)產(chǎn)物結(jié)構(gòu)和組成進(jìn)行了表征。以KOH為電解液,研究了Fe_3O_4@POPD復(fù)合材料的電化學(xué)性能。結(jié)果顯示,POPD-Fe-8(當(dāng)FeCl_3.6H_2O用量為8mmol的產(chǎn)品)因其合適的微球尺寸,使得樣品的電化學(xué)性能明顯增強(qiáng),其中包括:較高的比電容(在電流密度為1 A·g~(-1)時(shí),比電容為1252.5 F·g~(-1)),優(yōu)異的倍率性能(在電流密度為4 A·g~(-1)時(shí),比電容仍能達(dá)到619.6 F·g~(-1)),出色的循環(huán)穩(wěn)定性(循環(huán)2500次后,電容仍還有79.6%)。(3)此外,本論文在上一個(gè)實(shí)驗(yàn)的基礎(chǔ)上通過(guò)加入MnC_(l2),從而制備出帶有雙金屬氧化物導(dǎo)電聚合物復(fù)合材料。并且通過(guò)改變FeCl_3.6H_2O的用量,研究了其對(duì)產(chǎn)品形貌和尺寸的影響。同時(shí),以KOH為電解液,研究了所制備的Fe_3O_4-Mn3O4@POPD(POPD-Fe-Mn)復(fù)合材料的電化學(xué)性能。結(jié)果表明,POPD-MnFe-4(FeCl_3.6H_2O的用量為4 mmol)具有最佳的電化學(xué)性能:較高的比電容(在電流密度為1 A·g~(-1)時(shí),比電容1455.9 F·g~(-1)),優(yōu)異的倍率性能(在電流密度為3 A·g~(-1)時(shí),比電容仍能達(dá)到846.9 F·g~(-1)),出色的循環(huán)穩(wěn)定性(循環(huán)2500次后,電容仍還有78.3%左右)。
[Abstract]:Supercapacitor, also known as electrochemical capacitor (EC), is a new energy storage device, its energy density is much lower than the battery, and the shelf life and life is much longer than the battery. The research and development of super capacitor is the main pulse to replace the battery, which is mainly because the battery power, shelf life and life cycle is relatively short, and now can not meet the application requirements more and more high. With the development of technology, researchers are vigorously on super capacitors, especially the electrode material, this is mainly because the electrode material is an important factor to determine the comprehensive performance of the super capacitor at present. The super capacitor electrode material mainly has the following kinds: carbon materials, metal oxide, conductive polymer and composite materials of three kinds of materials. Under the above background, this paper research and design of high performance super capacitor The target, mainly carried out the following work: (1) this paper successfully prepared by hydrothermal method Mn~ (2+) Fe_3O_4 nanoparticles doped with FeCl_3.6H_2O, which is the only source of iron, two manganese chloride as the doping agent and sodium acetate as precipitator, and ethylene glycol as the reducing agent and solvent by transmission. Electron microscopy (TEM), scanning electron microscopy (SEM) and XRD were used to characterize its structure. By controlling the reaction time, the nucleation and growth mechanism of Fe_3O_4 nanoparticles; using KOH as electrolyte, electrochemical properties of Fe_3O_4 nanoparticles prepared by Mn doping. The results show that: the effect on the electrochemical properties of Mn doped amount of Fe_3O_4 nanoparticles. Among them, when Mn~ (2+) doped with 1.5 mmol Fe_3O_4-Mn-1.5, the best electrochemical performance at a current density of 1 A - g~ (-1), high specific capacitance of 292.5 F - g~ (-1), when the current Density of 3.5 A - g~ (-1), can still reach 121 F - g~ (-1), the specific capacitance of excellent cycle stability (after 600 cycles, the capacitance is still 83%). (2) conductive polymer polyaniline and its derivatives is very important, they are in electrochemistry and other fields have a wide range of polymer resin application. Therefore, this thesis takes six as the sole source of iron and ferric chloride water oxidizing agent, ammonia as precipitant and doping agent, were prepared by one pot Fe_3O_4@ p o two amine (POPD-Fe) nano composite material. By using scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X ray diffraction, N2 adsorption desorption. Thermogravimetric analysis on product structure and composition were characterized. With KOH as the electrolyte on the electrochemical performance of Fe_3O_4@POPD composite materials. The results showed that POPD-Fe-8 (when the content of FeCl_3.6H_2O was 8mmol) because of its suitable particle size, the electrochemical properties of the samples Enhanced, including: high specific capacitance (at current density of 1 A - g~ (-1), the specific capacitance was 1252.5 F - g~ (-1)), excellent rate performance (at a current density of 4 A - g~ (-1), can still reach 619.6 F - g~ (capacitance -1)), excellent cycle stability (after 2500 cycles, the capacitance is still 79.6%). (3) in addition, in this paper on the basis of an experiment by adding MnC_ (L2), which was prepared with double metal oxide conductive polymer composite materials. And by changing the amount of FeCl_3.6H_2O research the influence on the morphology and size of the products. At the same time, with KOH as electrolyte were investigated by Fe_3O_4-Mn3O4@POPD (POPD-Fe-Mn) the electrochemical properties of composite materials. The results showed that POPD-MnFe-4 (the amount of FeCl_3.6H_2O was 4 mmol) has the best electrochemical performance: high specific capacitance (at a current density of 1 A - g~ (-1), the specific capacitance of 1455. 9 F. G~ (-1), and excellent rate performance (at current density of 3 A. G~ (-1), the specific capacitance can still reach 846.9 F? G~ (-1), and the excellent cycle stability (2500 times after cycling is still about 78.3%).

【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM53;TB33

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 余麗麗;朱俊杰;趙景泰;;超級(jí)電容器的現(xiàn)狀及發(fā)展趨勢(shì)[J];自然雜志;2015年03期

2 蔡斌;;萊頓瓶:最原始的電容器[J];供用電;2014年07期

3 邢寶林;黃光許;諶倫建;張傳祥;徐冰;;超級(jí)電容器電極材料的研究現(xiàn)狀與展望[J];材料導(dǎo)報(bào);2012年19期

4 李作鵬;趙建國(guó);溫雅瓊;李江;邢寶巖;郭永;;超級(jí)電容器電解質(zhì)研究進(jìn)展[J];化工進(jìn)展;2012年08期

5 鄭麗萍;王先友;;超級(jí)電容器用碳化物骨架碳/導(dǎo)電聚合物復(fù)合材料的研究進(jìn)展[J];化學(xué)通報(bào);2011年11期

6 王康;余愛梅;鄭華均;;超級(jí)電容器電極材料的研究發(fā)展[J];浙江化工;2010年04期

7 袁定勝;胡向春;劉應(yīng)亮;楊創(chuàng)濤;;超級(jí)電容器用炭材料的研究進(jìn)展[J];電池;2007年06期

8 阿孜古麗·木爾賽力木;如仙古麗·加馬力;吐爾遜·阿不都熱依木;司馬義·努爾拉;吾買爾江·吐爾遜;;界面聚合法合成聚鄰苯二胺及其表征[J];化學(xué)研究與應(yīng)用;2007年04期

9 吳鋒;徐斌;;碳納米管在超級(jí)電容器中的應(yīng)用研究進(jìn)展[J];新型炭材料;2006年02期

10 張治安;楊邦朝;胡永達(dá);;超級(jí)電容器Mn-Pb納米復(fù)合電極材料的電化學(xué)性能研究(英文)[J];功能材料;2006年02期

,

本文編號(hào):1500960

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1500960.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e4d1c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com