多點(diǎn)接觸微納加工設(shè)備的力檢測及控制系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
本文關(guān)鍵詞: 摩擦誘導(dǎo)加工 微納制造 納米摩擦學(xué) 摩擦力 設(shè)備 出處:《西南交通大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:納米技術(shù)在微電子技術(shù)、生物醫(yī)學(xué)、國防科技等領(lǐng)域嶄露頭角,迅速發(fā)展成為21世紀(jì)最具有廣闊發(fā)展前景的新技術(shù)。納米加工技術(shù)是納米技術(shù)走向應(yīng)用的載體。隨著納米技術(shù)的飛速發(fā)展,多種納米加工方法應(yīng)運(yùn)而生。摩擦誘導(dǎo)加工方法作為一種低成本的方法,具有巨大發(fā)展?jié)摿Α1疚囊缘谝淮Σ琳T導(dǎo)微米級加工設(shè)備為藍(lán)本,對其力檢測和控制系統(tǒng)進(jìn)行設(shè)計(jì),研制出自動(dòng)化程度更高、功能更豐富的第二代加工設(shè)備。與第一代設(shè)備相比,除了可實(shí)現(xiàn)上一代設(shè)備基本功能外,還可以實(shí)時(shí)檢測加工過程中的摩擦力信號,對介于宏觀和微觀之間狀態(tài)的材料表面摩擦、磨損情況進(jìn)行研究。第二代的設(shè)備具有加工效率更高、加工質(zhì)量更好、操作更為簡便等優(yōu)點(diǎn)。本文的主要工作和結(jié)論如下:1.研制了高精度載荷和摩擦力信號采集系統(tǒng)。在摩擦誘導(dǎo)加工過程中,載荷對加工結(jié)果影響顯著;此外,摩擦力能反映掃描過程中針尖與樣品的摩擦狀態(tài),此二者的精確檢測對獲得良好的加工結(jié)果和后續(xù)研究意義重大。力信號采集機(jī)構(gòu)是將力信號轉(zhuǎn)換為計(jì)算機(jī)可以識別的數(shù)字信號的裝置,設(shè)計(jì)采用激光位移傳感器檢測正應(yīng)力,電阻應(yīng)變片檢測摩擦力。2.設(shè)計(jì)和加工了雙向受力形變懸臂。懸臂結(jié)構(gòu)與可靠性對力檢測結(jié)果具有顯著影響,為更好地研究設(shè)備加工過程中針尖與樣品的實(shí)時(shí)接觸狀況,設(shè)計(jì)了可同時(shí)在法向和切向產(chǎn)生形變的組合式平行雙簧片懸臂梁,該懸臂梁法向、切向形變相互獨(dú)立,各不影響,保證懸臂位移真實(shí)地反映其受力大小。3.實(shí)現(xiàn)了載荷的自動(dòng)控制。第一代設(shè)備中手動(dòng)加載方式的加工效率和可控性較低,因此在第二代設(shè)備中采用軟件控制的Z向位移臺(tái)執(zhí)行載荷進(jìn)給運(yùn)動(dòng),使得所有加工操作都在軟件控制面板實(shí)現(xiàn),提升了設(shè)備的效率和操作體驗(yàn)。
[Abstract]:Nanotechnology is emerging in the fields of microelectronics, biomedicine, defense science and technology. In 21th century, it has become the most promising new technology. Nanoprocessing technology is the carrier of nanotechnology application. With the rapid development of nanotechnology. As a low-cost method, friction induced processing has great development potential. This paper takes the first generation friction induced micron processing equipment as the blueprint. The force detection and control system is designed, and the second generation processing equipment with higher automation degree and richer function is developed. Compared with the first generation equipment, it can realize the basic functions of the previous generation equipment. It can also detect the signal of friction force in the process of machining in real time, and study the friction and wear of materials between macro and micro state. The second generation equipment has higher machining efficiency and better quality. The main work and conclusions of this paper are as follows: 1. A high precision signal acquisition system for load and friction is developed. In the process of friction-induced processing, the load has a significant effect on the processing results. In addition, the friction force can reflect the friction state between the tip and the sample during the scanning process. The accurate detection of these two methods is of great significance to obtain good machining results and further research. The force signal acquisition mechanism is a device to convert the force signal into a digital signal that can be recognized by the computer. The laser displacement sensor is used to detect the normal stress and the resistance strain gauge is used to detect the friction force. 2. The bidirectional deformation cantilever is designed and machined. The cantilever structure and reliability have a significant effect on the results of the force detection. In order to better study the real-time contact between the tip and the sample during the processing of the equipment, a combined parallel double-spring cantilever beam, which can produce deformation in both normal and tangential directions, is designed. The cantilever beam is normal. The tangential deformation is independent of each other and does not affect each other, which ensures that the cantilever displacement truly reflects the force magnitude. 3. The automatic control of the load is realized. The machining efficiency and controllability of the manual loading mode in the first generation equipment are low. Therefore, in the second generation equipment, the Z-direction displacement table controlled by software is used to carry out the load feed movement, which makes all processing operations realized in the software control panel, and improves the efficiency and operation experience of the equipment.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB383.1;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 魏玉平;丁玉成;李長河;;納米壓印光刻技術(shù)綜述[J];制造技術(shù)與機(jī)床;2012年08期
2 陳寶欽;;微光刻與微/納米加工技術(shù)[J];微納電子技術(shù);2011年01期
3 張國徽;;納米技術(shù)與環(huán)境保護(hù)[J];環(huán)境保護(hù)與循環(huán)經(jīng)濟(jì);2008年10期
4 劉小龍;沙繼斌;張鎮(zhèn)西;;蘸礁筆納米平板印刷術(shù)(DPN)在蛋白質(zhì)芯片中的應(yīng)用[J];化學(xué)通報(bào);2006年12期
5 王建華;胡大琳;張滿平;;雙懸臂梁結(jié)構(gòu)的應(yīng)用研究[J];力學(xué)與實(shí)踐;2005年06期
6 楊振江,余進(jìn);微功耗高性能儀表放大器INA126及其應(yīng)用[J];國外電子元器件;1998年03期
相關(guān)博士學(xué)位論文 前1條
1 余丙軍;單晶硅表面摩擦誘導(dǎo)納米凸結(jié)構(gòu)的形成、機(jī)理及應(yīng)用研究[D];西南交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前3條
1 李連凱;基于摩擦誘導(dǎo)選擇性刻蝕原理的單晶硅表面大面積疏水織構(gòu)加工[D];西南交通大學(xué);2014年
2 吳治江;基于摩擦誘導(dǎo)方法的多點(diǎn)接觸微米級加工設(shè)備研制[D];西南交通大學(xué);2013年
3 石二磊;硅微懸臂梁探針的制備工藝研究[D];大連理工大學(xué);2008年
,本文編號:1489044
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1489044.html