天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

有機(jī)—無機(jī)雜化鈣鈦礦材料的表面修飾及其器件組裝

發(fā)布時(shí)間:2018-01-25 14:06

  本文關(guān)鍵詞: 有機(jī)無機(jī)雜化鈣鈦礦 表面修飾 界面工程 電子轉(zhuǎn)移 傳感器 出處:《山東大學(xué)》2017年博士論文 論文類型:學(xué)位論文


【摘要】:近年來,全球能源危機(jī)逐漸加深、環(huán)境污染不斷加重,人們急需清潔、可再生的能源。太陽能作為全球最為豐富的清潔可再生能源,可以通過光電轉(zhuǎn)換技術(shù)直接把光能轉(zhuǎn)化成電能。在所有的光電轉(zhuǎn)換技術(shù)中,有機(jī)-無機(jī)雜化鈣鈦礦(ABX3:A 為 CH3NH3+或 CH(NH2)2+,B 是 Pb2+,X 是 I-或 Br-或 Cl-)做為吸光層組裝而成的太陽能電池的興起與迅猛發(fā)展使之成為最有潛力的光伏材料。從2009年至今短短幾年間,鈣鈦礦太陽能電池的光電轉(zhuǎn)換效率已經(jīng)從最初的3.8%增至22.1%,幾乎可以與單晶硅太陽能電池(23.4%)相媲美,且組裝工藝簡單、成本低,有望成為已經(jīng)工業(yè)化的硅基太陽能電池的最佳替補(bǔ),被Science期刊評為2013年十大科技突破之一。雖然鈣鈦礦太陽能電池的光電轉(zhuǎn)換效率較高,但器件的不穩(wěn)定性成為其工業(yè)化亟待攻克的一個難題。因?yàn)殁}鈦礦材料對環(huán)境因素表現(xiàn)出較低的容忍度,比如濕氣,水可以直接使CH3NH3PbI3分解為CH3NH3I和PbI2。本論文從界面工程的角度,選用具有特定功能傒二酰亞胺衍生物、苯胺類和具有不同疏水性的有機(jī)分子,對鈣鈦礦表面進(jìn)行修飾,旨在提高鈣鈦礦材料的穩(wěn)定性并探索鈣鈦礦材料在其他電子器件方面的應(yīng)用,為組裝高效、穩(wěn)定的鈣鈦礦光電子器件提供理論基礎(chǔ)。本論文的研究內(nèi)容如下:第一章概述了鈣鈦礦材料的結(jié)構(gòu)特點(diǎn)和性質(zhì),簡述了納米鈣鈦礦的制備并總結(jié)了鈣鈦礦太陽能電池、LED和激光器的工作原理以及界面工程在這些器件中所起的重要作用。第二章傒二酰亞胺衍生物作為一類具有良好光穩(wěn)定性和光電性質(zhì)的缺電子有機(jī)分子,常被用來作為有機(jī)太陽能電池中的電子受體。本章設(shè)計(jì)合成了對稱的花二酰亞胺分子PDI-I,用具有光異構(gòu)性質(zhì)的4,4-二苯乙烯二羧酸(trans-SDBA,cis-SDBA)作為電子給體,來研究電子給體的異構(gòu)化和電子受體的存在形式對跨界面電子轉(zhuǎn)移的影響。紫外可見吸收光譜和穩(wěn)態(tài)熒光光譜表明PDI-I和兩種SDBA都能以1:1的比例通過離子作用形成穩(wěn)定的配合物,但是與cis-SDBA所形成為配合物更穩(wěn)定。電化學(xué)分析也顯示cis-SDBA與PDI-I之間有更大的電子轉(zhuǎn)移的驅(qū)動力,是更為合適的電子給體。然而淬滅實(shí)驗(yàn)表明trans-SDBA與PDI-I之間的電子轉(zhuǎn)移效率更高。通過原子力顯微鏡和對比兩種配合物在甲醇(PDI-I在甲醇中以單體形式存在,而在水中以聚集體形式存在)中的電子轉(zhuǎn)移情況,cis-SDBA與PDI-I的相互作用太強(qiáng)以至于使PDI-I形成聚集體(PDI-I)n遭到破壞,由此可以看出,PDI-I的聚集程度和狀態(tài)對跨界面的電子轉(zhuǎn)移用著非常重要的影響。該研究結(jié)果為設(shè)計(jì)和調(diào)控傒二酰亞胺對鈣鈦礦進(jìn)行表面修飾時(shí)的存在狀態(tài)提供了指導(dǎo)。第三章選用傒二酰亞胺作為表面修飾劑,通過研究傒二酰亞胺與鈣鈦礦CH3NH3PbBr3之間的電子轉(zhuǎn)移情況來探究鈣鈦礦受激發(fā)后的激子和表面缺陷情況;诘诙碌难芯拷Y(jié)果,我們設(shè)計(jì)合成了不易形成聚集體(減小探針分子本身的存在形式對電子轉(zhuǎn)移的影響)且具有較強(qiáng)吸電子能力的傒二酰亞胺PDI。通過-NH3+的連接,將其成功修飾到CH3NH3PbBr3納米顆粒表面。經(jīng)過X-射線衍射分析,PDI修飾的CH3NH3PbBr3納米粒子為立方晶相且具有良好的結(jié)晶性。穩(wěn)態(tài)、瞬態(tài)熒光光譜和量子產(chǎn)率表明,鈣鈦礦的熒光幾乎完全被PDI淬滅,這表明PDI分子能有效地提取鈣鈦礦中的光生電子,在PDI分子和鈣鈦礦納米顆粒之間發(fā)生有效地跨界面電子轉(zhuǎn)移。第四章選用靈活性和化學(xué)修飾性更強(qiáng)的一系列不同電子性質(zhì)的苯胺分子作為修飾劑,即對位上有供電子的-OCH2CH3(-EtO)、H和吸電子的-OCF3的苯胺,探究芳香胺類有機(jī)分子作為鈣鈦礦表面修飾劑的可能性。通過調(diào)節(jié)苯胺鹽與甲胺鹽的比例,合成了一系列的CH3NH3PbBr3納米粒子。通過核磁和熱重分析,對位為H原子且堿性居中的苯胺An很容易修飾到鈣鈦礦CH3NH3PbBr3納米粒子上;而對于堿性較強(qiáng)且具有供電子基團(tuán)的EtO-An,只有當(dāng)EtO-An與甲胺鹽的比例大于1時(shí),才能實(shí)現(xiàn)苯胺的修飾;而堿性最弱且具有吸電子基的OCF3-An,即使苯胺鹽的比例再增加,也不能成功修飾鈣鈦礦。所以,影響鈣鈦礦表面修飾的因素除了修飾分子的堿性強(qiáng)弱,分子的空間位阻的影響是不可忽視的。此外,我們還研究了成功修飾后的鈣鈦礦納米顆粒薄膜的電導(dǎo),發(fā)現(xiàn)對位為供電子基團(tuán)的EtOAn可以有效地增加鈣鈦礦的電導(dǎo),該研究為調(diào)控鈣鈦礦的性質(zhì)提供了新思路和指導(dǎo)。第五章我們利用界面電子轉(zhuǎn)移成功拓展了鈣鈦礦材料在有毒N02氣體識別方面的應(yīng)用。我們旋涂四種不同濃度(20、25、30和35 ωt%)的前驅(qū)體溶液制備了一系列的MAPbBr3薄膜(SCFs),并用滴涂法制備了正辛胺封端的鈣鈦礦納米顆粒薄膜(NPF)。實(shí)驗(yàn)結(jié)果表明,兩種鈣鈦礦傳感器均能對NO2氣體實(shí)現(xiàn)可逆?zhèn)鞲?但是其傳感能力相差很大。對于SCFs傳感器,依照35 wt%(0.1 ppm)30 wt%(0.15 ppm)25 wt%(0.38 ppm)= 20 wt%(0.38 ppm)的順序,檢測限依次增加,傳感器傳感反應(yīng)能力按照30 wt%35 wt%25 wt%20 wt%的順序依次降低。而對于NPF傳感器,其檢測限為0.1 ppm,傳感反應(yīng)能力略強(qiáng)于30 wt%SCF傳感器,并且具有更好的穩(wěn)定性。我們提出了鈣鈦礦SCF傳感器對NO2可逆?zhèn)鞲械臋C(jī)理:即氧化性的N02物理吸附在鈣鈦礦表面形成N02(ad),會發(fā)生從鈣鈦礦到N02(ad)的電子轉(zhuǎn)移導(dǎo)致鈣鈦礦電子密度降低,電子電導(dǎo)下降。這是首次將有機(jī)鉛鈣鈦礦用做化學(xué)氣體傳感器來識別有毒氣體NO2。由于該傳感器可以在室溫下工作,具有很高的檢測靈敏度,響應(yīng)迅速,以及成本低、易組裝等優(yōu)點(diǎn),因此具有很好的發(fā)展前景。第六章選用正辛胺、十二胺和十六胺三種不同碳鏈長度的脂肪胺鹽,采用浸漬法對鈣鈦礦薄膜進(jìn)行表面修飾。修飾后的脂肪鏈可以在鈣鈦表面形成一層疏水的分子層,防止水分子對鈣鈦礦薄膜的入侵,從而增加鈣鈦礦薄膜對水的穩(wěn)定性。研究結(jié)果發(fā)現(xiàn),十二胺對鈣鈦礦MAPbBr3薄膜的修飾效果最好,最佳的修飾時(shí)間為1.5 h,最佳的反應(yīng)物濃度為20 mM。與未修飾的鈣鈦礦薄膜相比,表面鈍化后薄膜的熒光壽命有所增加,薄膜的晶粒也略微增大,表面對水的接觸角從38.1°提高到103.9°,由親水性成功變?yōu)橛H油性。在相對濕度為85%的條件下,薄膜的穩(wěn)定性有了顯著提高。第七章對論文的研究工作進(jìn)行系統(tǒng)總結(jié),包括論文的創(chuàng)新點(diǎn)和不足,并對研究工作進(jìn)一步的展開提出展望。
[Abstract]:In recent years, the global energy crisis has deepened, environmental pollution is increasing, people need to clean, renewable energy. Solar energy is the most abundant renewable energy for the world, through the photoelectric conversion technology directly convert light into electrical energy. In all of the photoelectric conversion technology, organic-inorganic hybrid perovskite (ABX3:A CH3NH3+ or CH (NH2) 2+, B Pb2+, X is I- or Br- or Cl-) made solar cell into the light absorbing layer assembly and rapid development has become the most promising photovoltaic materials. Since 2009, just a few years, the photoelectric conversion efficiency of solar cell perovskite has from the initial 3.8% to 22.1%, almost with monocrystalline silicon solar battery (23.4%) comparable, and the assembly process is simple, low cost, is expected to become the best substitute of silicon-based solar cells has been industrialized, was named the Science Journal In 2013 ten major technological breakthroughs. Although higher photoelectric conversion efficiency of solar cell perovskite devices, but the instability has become a problem to be tackled in the industrialization. Because of environmental factors of perovskite materials exhibit a lower tolerance, such as moisture, water can be directly CH3NH3PbI3 decomposed into CH3NH3I and PbI2. from the interface the engineering angle, with specific function Xi two imide derivatives of aniline and with different hydrophobic organic molecules were modified on the surface to improve the stability of perovskite and perovskite materials and explore the application of perovskite materials in other electronic devices, to provide a theoretical basis for efficient assembly, perovskite stability. Research content of optoelectronic devices this thesis is as follows: the first chapter outlines the structure and properties of perovskite materials, nano perovskite preparation and the total The perovskite solar cells, an important role and working principle of LED laser and Interface Engineering played in these devices. The second chapter Xi two imide derivatives as a kind of good light stability and photoelectric properties of electron deficient organic molecules, is often used as a machine electron acceptor in solar cell. Two - the synthesis of PDI-I symmetric imine molecular design of this chapter, with two 4,4- styrene carboxylic acid having photoisomerization properties of two (trans-SDBA, cis-SDBA) as electron donor to study electron to form isomerization and electron acceptor of influence on cross interfacial electron transfer. UV Vis absorption spectra and steady-state fluorescence spectra showed that PDI-I and two SDBA can form stable complexes with the ratio of 1:1 by ion effect, but with cis-SDBA formed more stable complexes. The electrochemical analysis also showed that cis-SDBA and P There is a greater driving force for electron transfer between DI-I, is more suitable for the electron donor. However, quenching experiments show that the efficiency of electron transfer between trans-SDBA and PDI-I higher. By atomic force microscopy and comparison of two kinds of complexes in methanol (PDI-I in methanol, a monomer in the water to aggregates form) electron transfer in the interaction between cis-SDBA and PDI-I is too strong so that the formation of PDI-I aggregates (PDI-I) n is destroyed, it can be seen that the degree of aggregation and PDI-I of electron transfer across the interface with a very important influence. The research results provide guidance for the design and state of existence regulation two Xi imide modified the surface of the perovskite. The third chapter selects two Xi imide as surface modification agent, through the electronic transfer between two Xi imide and perovskite CH3NH3PbBr3 To explore the surface defects of perovskite exciton and after excitation. The results based on the second chapter, we designed and synthesized to form aggregates (reduced probe molecules form itself on electron transfer) and has strong electron withdrawing ability of two Xi imide PDI. through the -NH3+ connection, it will be successfully modified to the surface of CH3NH3PbBr3 nanoparticles. By X- ray diffraction analysis, CH3NH3PbBr3 nanoparticles modified by PDI is cubic phase and has good crystallinity. The steady state, suggesting that the transient fluorescence spectra and fluorescence quantum yield, perovskite PDI was almost completely quenched, suggesting that PDI molecules can effectively extract the perovskite in the photogenerated electrons effectively across the interfacial electron transfer between PDI molecules and perovskite nanoparticles. A series of different electronic properties of aniline and chemical modification of the fourth chapter with more flexibility As a molecular modifier, namely electron donor (-EtO), -OCH2CH3 - H and electron withdrawing -OCF3 aniline, as the possibility of perovskite surface modifier of aromatic amine organic molecules. By adjusting the proportion of aniline salt and methylamine, CH3NH3PbBr3 nanoparticles synthesized a series by NMR and thermogravimetric analysis. For An and H atoms on aniline in alkaline easily modified to perovskite CH3NH3PbBr3 nanoparticles; but for alkaline and has strong electron donating group EtO-An, only when the EtO-An and methylamine salt ratio is greater than 1, modified to achieve aniline; and alkaline and has the weakest electron withdrawing OCF3-An, even aniline salt the proportion increased again, can not successfully modified perovskite. So, the influence factors of surface modification of perovskite in addition to alkali modification of the molecule, the effect of molecular steric hindrance can not be ignored. In addition, we also studied the conductivity of perovskite nanoparticles films were successfully modified, found alignment as an electron donating group EtOAn can effectively increase the conductivity of the perovskite, provides new ideas and guidance for the study of perovskite regulation of the character. In the fifth chapter, we use the interface electron transfer successfully expanded the application of perovskite materials in toxic gas N02 recognition. We spin four different concentrations (20,25,30 and 35 Omega t%) a series of MAPbBr3 films prepared by the precursor solution system (SCFs), and preparation of octyl amine terminated perovskite nano particle film by drop coating method (NPF). The experimental results show that two kinds of perovskite type sensor can the NO2 gas sensor to realize reversible, but its sensing capabilities vary greatly. For the SCFs sensor, according to the 35 wt% (0.1 ppm) 30 wt% (0.15 ppm) 25 wt% (0.38 ppm) = 20 wt% (0.38 ppm) order, the detection limit were increase Plus, sensor response ability according to the 30 wt%35 wt%25 wt%20 wt% the order. But for the NPF sensor, the detection limit is 0.1 ppm, the sensing response ability is slightly better than the 30 wt%SCF sensor, and has better stability. We put forward the mechanism of perovskite SCF sensor on the NO2 reversible sensor: N02 oxidation of physics the formation of N02 on the adsorption surface of the perovskite (AD), occur from perovskite to N02 (AD) electron transfer to perovskite reduced electron density, electron conductivity decreased. This is the first organic lead calcium titanium mine as a chemical gas sensor to identify the toxic gas NO2. as the sensor can work at room temperature, with the detection sensitivity high response speed, and low cost, easy to assemble, so it has good prospects for development. The sixth chapter selects n-octylamine, twelve amines and sixteen amine three different carbon chain length of the fat Fatty amine salts by impregnation method for surface modification of Perovskite Thin Films. The modified aliphatic chain can form a layer of hydrophobic molecules in calcium titanium surface, prevent the intrusion of water molecules on the perovskite thin films, thereby increasing the stability of Perovskite Thin Films on water. The results of the study showed that the best modification effect of twelve amines on the perovskite MAPbBr3 thin films. The best modification time is 1.5 h, the best concentration was 20 mM. compared with the unmodified Perovskite Thin Films, surface passivation film fluorescence lifetime increased, the grain also increased slightly, the surface of the water contact angle from 38.1 degree to 103.9 degrees, from hydrophilic to hydrophobic success. When the relative humidity is 85%, the stability of the films has been significantly improved. The seventh chapter of this dissertation is summarized, including the innovations and shortcomings, and further research work A prospect is put forward.

【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TB306

【參考文獻(xiàn)】

相關(guān)期刊論文 前1條

1 Yu-Che Hsiao;Ting Wu;Huidong Zang;Mingxing Li;Bin Hu;;Addressing dynamic photovoltaic processes at electrode:active layer and donor:acceptor interfaces in organic solar cells under device-operating conditions[J];Science China Chemistry;2015年02期

,

本文編號:1463015

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1463015.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶229f0***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com