CFRP正交切削中亞表面損傷量化表征及控制技術(shù)研究
本文關(guān)鍵詞:CFRP正交切削中亞表面損傷量化表征及控制技術(shù)研究 出處:《哈爾濱工業(yè)大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 碳纖維復(fù)合材料 亞表面損傷 正交切削 損傷因子 掃描聲學(xué)顯微鏡 有限元方法
【摘要】:碳纖維增強(qiáng)樹脂基復(fù)合材料(Carbon Fiber Reinforced Polymer,CFRP)因其具有優(yōu)秀的力學(xué)性能和高效的制備工藝,目前已經(jīng)成為航空、航天產(chǎn)業(yè)等高科技領(lǐng)域內(nèi)承力結(jié)構(gòu)件的主要制備材料之一,并被廣泛認(rèn)為是替代傳統(tǒng)金屬及合金材料的新一代高性能材料。在制備CFRP結(jié)構(gòu)件時(shí),為了減少成型后CFRP內(nèi)部結(jié)構(gòu)缺陷、保障結(jié)構(gòu)件最終的力學(xué)性能和抗疲勞性能,CFRP的成型工藝通常都是一次幾凈成型的。與此同時(shí),CFRP結(jié)構(gòu)件在實(shí)際工程應(yīng)用中經(jīng)常需要與金屬或其他非金屬材料件進(jìn)行固定或組裝,CFRP結(jié)構(gòu)件的二次加工后處理過程在所難免。然而,由于CFRP具有多相性和各向異性的特點(diǎn),其在加工性能上與各向同性的金屬或合金材料完全不同,傳統(tǒng)金屬材料的加工工藝和經(jīng)驗(yàn)公式對CFRP來說已不完全適用。特別是,對于CFRP來說,其在加工后在表面和亞表面通常會(huì)出現(xiàn)多種類型的損傷失效模式,這些由切削力誘導(dǎo)產(chǎn)生的微觀結(jié)構(gòu)缺陷會(huì)嚴(yán)重?fù)p害CFRP結(jié)構(gòu)件的力學(xué)性能和抗疲勞性能。與對CFRP加工性能進(jìn)行研究相比,對CFRP在加工后產(chǎn)生的缺陷進(jìn)行科學(xué)地表征研究,進(jìn)而掌握有效控制CFRP加工后亞表面損傷程度的方法也是同樣重要的。因此,為了提高CFRP的加工效率、提升CFRP結(jié)構(gòu)件加工后加工面的表面質(zhì)量與成型尺寸精度,以及控制切削力導(dǎo)致的微觀缺陷,本文從研究CFRP的切削加工性能,和加工參數(shù)影響下的亞表面損傷程度的表征與分析入手,先后開展了基于正交切削過程的CFRP切削實(shí)驗(yàn)研究和有限元仿真研究。在CFRP正交切削實(shí)驗(yàn)中,兩種常用于工程應(yīng)用中并具有代表性纖維結(jié)構(gòu)類型的CFRP材料,單向連續(xù)碳纖維復(fù)合材料層合板和二維平面正交編織碳纖維復(fù)合材料層合板被分別用來制備實(shí)驗(yàn)用切削加工件。為了表征CFRP的切削加工性能,正交切削過程中的切削力和加工后的表面形貌質(zhì)量都是本文的重點(diǎn)考察指標(biāo)。正交切削實(shí)驗(yàn)是以單因素實(shí)驗(yàn)形式開展的,其中具有多個(gè)水平的纖維方向角度、切削速度和切削深度是實(shí)驗(yàn)中主要研究因素。一個(gè)基于壓電式三向測力儀的切削力測量系統(tǒng)被用來獲取CFRP在加工過程中的實(shí)時(shí)的主切削力和切深抗力值,同時(shí)金相顯微觀測法和輪廓儀表征法被分別用來觀測和表征兩種CFRP加工件加工后產(chǎn)生的損傷破壞形式和表面粗糙度。切削實(shí)驗(yàn)發(fā)現(xiàn),CFRP的纖維方向角度對切削力和加工表面質(zhì)量都有顯著影響,并且切削速度的提高和切削深度的降低可以有效提高CFRP的切削表現(xiàn):對于UD-CFRP來說,切削速度的提高可以使主切削力最大減少142.29N、切深抗力最大減少97.12N、加工后表面粗糙度最大下降5.9068μm,切削深度的提高會(huì)使主切削力最大上升143.67N、切深抗力最大上升80.54N、加工后表面粗糙度最大提高10.3689μm;對于Woven CFRP來說,切削速度的提高可以使主切削力最大減少66.06N、切深抗力最大減少37.16N、加工后表面粗糙度最大下降3.9580μm,切削深度的提高會(huì)使主切削力最大上升55.06N、切深抗力最大上升33.29N、加工后表面粗糙度最大提高4.4107μm。此外,為了分析切削實(shí)驗(yàn)中CFRP加工誘導(dǎo)亞表面損傷的影響因素,一種基于超聲無損檢測技術(shù)的掃描聲學(xué)顯微鏡被用來掃描并檢測CFRP在加工后的亞表面損傷程度。并且,為了可以對CFRP加工件中由切削力誘導(dǎo)產(chǎn)生的亞表面損傷進(jìn)行定量分析,一維深度損傷因子Fdep和二維面積損傷因子Fa被建立并借助數(shù)字圖像分析技術(shù)來量化表征超聲掃描圖像中每個(gè)CFRP加工件的亞表面損傷程度。在CFRP正交切削有限元仿真研究中,一個(gè)利用用戶子程序VUMAT嵌入復(fù)合材料失效準(zhǔn)則的三維等效均質(zhì)CFRP正交切削過程有限元模型被成功建立。為了提高仿真精度以及驗(yàn)證該模型的可適用性,將基于四種不同復(fù)合材料失效準(zhǔn)則有限元模型的仿真結(jié)果分別與實(shí)驗(yàn)測試值進(jìn)行對比分析,比照參量包括切削力和亞表面損傷因子。其中,損傷因子中各參量的大小通過Python腳本語言捕捉到的單元信息進(jìn)行獲取。通過與實(shí)驗(yàn)結(jié)果進(jìn)行驗(yàn)證后得到,基于HashinPuck準(zhǔn)則的UD-CFRP模型在計(jì)算四種被考察的目標(biāo)參量時(shí),平均誤差僅為16.44%;而對于Woven CFRP模型來說,Hashin失效準(zhǔn)則和HashinPuck準(zhǔn)則都有不錯(cuò)的表現(xiàn),基于HashinPuck準(zhǔn)則的Woven CFRP模型計(jì)算得到的模擬結(jié)果與實(shí)驗(yàn)結(jié)果的平均誤差為8.03%。驗(yàn)證后的有限元模型被用來預(yù)測在多組正交切削加工參數(shù)下兩種不同結(jié)構(gòu)的CFRP的切削力和損傷因子的值,進(jìn)而提供一個(gè)可信的加工參數(shù)優(yōu)化范圍,以減少CFRP加工件在加工后的亞表面損傷程度,提高CFRP的切削加工效率。正交切削加工UD-CFRP的最優(yōu)加工參數(shù)組合為,切削速度309.5m/min和切削深度0.1mm;加工Woven CFRP所用加工參數(shù)給出優(yōu)化區(qū)間為,切削速度在200m/min以上,同時(shí)切削深度小于0.35mm。本文中建立的切削實(shí)驗(yàn)研究方案和有限元數(shù)值模型可以有效表征CFRP材料的切削加工性能和亞表面損傷行為,同時(shí),利用可量化表征亞表面損傷程度的損傷因子對CFRP加工參數(shù)進(jìn)行優(yōu)化選擇也是切實(shí)有效的,具有較好的工程應(yīng)用前景。
[Abstract]:Carbon fiber reinforced resin matrix composites (Carbon Fiber Reinforced Polymer, CFRP) because of its excellent mechanical properties and efficient preparation process, has become one of the main preparation of aviation materials, structural components for the aerospace industry and other high-tech fields, and is widely considered to be a new generation of high performance material substitution the traditional metal and alloy materials. In the preparation of the CFRP structure, in order to reduce the forming CFRP internal structure, support structure ultimate mechanical properties and anti fatigue performance, molding process of CFRP is usually a few net shape. At the same time, the CFRP structure in practical engineering applications often need to metal or other non-metallic materials are fixed or assembled, two processing CFRP structure of the postprocessing process can hardly be avoided. However, due to the characteristics of CFRP with heterogeneous and anisotropic, the processing performance Completely different from the isotropic metal or alloy material, the traditional processing technology of metallic materials and the empirical formula for CFRP is not fully applicable. In particular, for CFRP, the after processing in the surface and sub surface often appear various types of failure mode, which caused by cutting force induced by micro structure the defects will seriously damage the mechanical properties of CFRP structures and anti fatigue properties. Compared with the research on CFRP processing performance, the defects of CFRP produced after processing of surface science and grasp the method of syndrome, sub surface damage to the effective control of CFRP process is also important. Therefore, in order to improve the machining efficiency of CFRP CFRP, lifting structure processing after processing the surface quality and size precision molding, and micro defects in the control of cutting force, the cutting of the CFRP, and Characterization and analysis of the degree of subsurface damage under the influence of processing parameters, has carried out the experimental study of CFRP cutting orthogonal cutting process and finite element simulation. Based on CFRP orthogonal cutting experiments, two kinds of commonly used in engineering application and representative fiber structure type CFRP unidirectional carbon fiber composite material laminates and two dimensional orthogonal woven carbon fiber composite laminates were used for the preparation of cutting experiments. In order to use the cutting performance characterization of CFRP, the surface morphology quality of orthogonal cutting process in cutting force and after processing are the key indexes in this paper. The orthogonal cutting experiment is based on the single factor experiment carried out in the form of fiber direction, having a plurality of levels, cutting speed and cutting depth is the main factor of the experiment. Based on a piezoelectric three to force measuring instrument The cutting force measuring system is used to obtain real-time CFRP main cutting force during machining and deep cutting resistance, and metallographic observation method and instrument method are used to outline syndrome observation and characterization of two CFRP processing after processing the damage form and surface roughness. Cutting experiments showed that the fiber orientation angle CFRP has a significant impact on the cutting force and the machined surface quality, and decreased with increasing cutting speed and cutting depth can effectively improve the cutting performance of CFRP: the UD-CFRP, the increase of the cutting speed can make the main cutting force reduced maximum 142.29N, maximum depth of cut resistance reduced 97.12N, after processing the surface roughness of the largest decline in 5.9068 m, the cutting depth will improve the main cutting force increased maximum 143.67N, maximum depth of cut resistance 80.54N increased after processing, the surface roughness is the largest increase of 10.3689 mu m; for Woven CFR P, the increase of the cutting speed can make the main cutting force reduced maximum 66.06N, maximum depth of cut resistance reduced 37.16N, after processing, the surface roughness is the largest decline in 3.9580 m, the cutting depth will improve the main cutting force increased maximum 55.06N, maximum depth of cut resistance 33.29N increased after processing, the surface roughness is the largest increase of 4.4107 mu m. In addition, in order to analyze the influence factors of CFRP process induced by sub surface damage cutting experiments, a scanning acoustic microscope based on ultrasonic nondestructive testing technology is used to scan and detect CFRP after processing sub surface damage. And, in order to can be used for the quantitative analysis of sub surface generated by the cutting force induced in CFRP processing one dimensional depth of damage, the damage factor Fdep and the two-dimensional area damage factor Fa was established with each CFRP processing of the quantitative characterization of ultrasonic scanning image in digital image analysis technology of sub table The surface damage degree. In the study of CFRP orthogonal cutting finite element simulation, failure criterion using a user subroutine VUMAT embedded composite 3D equivalent CFRP orthogonal cutting finite element model was successfully established. In order to improve the accuracy and applicability of the simulation to verify the model, four kinds of simulation finite element model of different composite failure criterion based on the results of material respectively and the experimental values were compared and analyzed according to the parameters including cutting force and sub surface damage factor. Among them, the parameters of the size of the damage factor through Python scripting language to capture the information obtained by the unit. With the result of experiment, the HashinPuck criterion of UD-CFRP model in the calculation of four kinds of the target parameters based on the average error is only 16.44%; and for the Woven CFRP model, Hashin failure criterion and HashinPuck criterion are Have a good performance, the average error of simulation results calculated by Woven CFRP model based on HashinPuck criterion and experimental results for the finite element model of 8.03%. test was used to predict the orthogonal cutting parameters under two different structures of CFRP cutting force and damage factor value, and then provide a processing parameter credible optimization range, in order to reduce the CFRP processing sub surface damage after processing, improve the machining efficiency of CFRP. The optimal processing parameters for UD-CFRP orthogonal cutting, cutting speed and cutting depth of 309.5m/min 0.1mm; Woven CFRP for processing parameters are optimized for processing interval, the cutting speed is above 200m/min, cutting the processing performance and sub surface and the cutting depth is less than 0.35mm. the cutting method of experimental research and finite element numerical model can effectively characterize CFRP materials It is also effective to optimize the processing parameters of CFRP by quantifying the damage factors of sub surface damage degree, and has a good engineering application prospect.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TQ327.3;TB332
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王卓;吳宇列;戴一帆;李圣怡;;光學(xué)材料磨削加工亞表面損傷層深度測量及預(yù)測方法研究[J];航空精密制造技術(shù);2007年05期
2 李改靈;孫開元;馮仁余;劉永軍;常林楓;;亞表面損傷機(jī)理以及常用測量方法研究[J];煤礦機(jī)械;2008年12期
3 王卓;吳宇列;戴一帆;李圣怡;周旭升;;光學(xué)材料研磨亞表面損傷的快速檢測及其影響規(guī)律[J];光學(xué)精密工程;2008年01期
4 呂漢峰;鄭子文;彭小強(qiáng);石峰;;磁流變拋光近零亞表面損傷工藝研究[J];航空精密制造技術(shù);2010年04期
5 高尚;康仁科;董志剛;郭東明;;工件旋轉(zhuǎn)法磨削硅片的亞表面損傷分布[J];機(jī)械工程學(xué)報(bào);2013年03期
6 漢語;劉成有;張勇;崔舒;徐井華;;基于截面顯微法的光學(xué)材料亞表面損傷檢測[J];通化師范學(xué)院學(xué)報(bào);2013年04期
7 王建彬;朱永偉;王加順;徐俊;左敦穩(wěn);;研磨方式對單晶藍(lán)寶石亞表面損傷層深度的影響[J];人工晶體學(xué)報(bào);2014年05期
8 葉卉;楊煒;胡陳林;畢果;彭云峰;許喬;;磨削加工光學(xué)元件亞表面損傷探究[J];強(qiáng)激光與粒子束;2014年09期
9 王卓;吳宇列;戴一帆;李圣怡;;研磨加工中光學(xué)材料亞表面損傷的表征方法[J];納米技術(shù)與精密工程;2008年05期
10 劉志軍;李圣怡;王卓;彭小強(qiáng);;光學(xué)元件拋光亞表面損傷實(shí)驗(yàn)研究[J];航空精密制造技術(shù);2008年05期
相關(guān)會(huì)議論文 前5條
1 田玉s,
本文編號:1433903
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1433903.html