雙官能型POSS的合成及其對高發(fā)射材料性能的影響
發(fā)布時間:2018-01-15 05:24
本文關(guān)鍵詞:雙官能型POSS的合成及其對高發(fā)射材料性能的影響 出處:《哈爾濱工業(yè)大學》2015年碩士論文 論文類型:學位論文
更多相關(guān)文章: 熱防護體系 高發(fā)射率材料 POSS溶膠體系 抗熱震性
【摘要】:紅外輻射材料現(xiàn)如今廣泛應用于工業(yè)爐以及航天領(lǐng)域中。尤其是在航天領(lǐng)域,當航天器穿過大氣層返回到地面的過程中,會產(chǎn)生大量的熱量,如果熱量不能及時散發(fā)出去,是對航天器致命的損壞。因此熱防護體系的研究就倍受關(guān)注。高發(fā)射材料能夠?qū)⒃诨妆砻娴臒崃恳暂椛涞男问缴l(fā)出去,來降低溫度。因此將高發(fā)射材料涂覆到航天器上能夠很有效的解決其表面過熱的現(xiàn)象。而當前的研究重點是提高涂層發(fā)射率和抗熱震性能。本實驗主要目的是制備出抗熱震性能良好的高發(fā)射涂層。我們以POSS溶膠為粘結(jié)劑,Si C、Mo Si2為主要原料,添加過渡金屬氧化物實現(xiàn)多組分的復合,采用球磨的方法制備涂料。采用涂覆的方式,將POSS溶膠和涂料依次涂覆到陶瓷基的基底上,熱固化后得到涂層。通過SEM對涂層的表面和斷面形貌進行了測試分析,并用紅外測試和XRD研究在過程中涂料發(fā)生的結(jié)構(gòu)變化。最后對涂層的發(fā)射率以及抗熱震性能進行測試分析。通過分析XRD測試得到,在800~1000℃時,有部分的Si C、Mo Si2被氧化,這是涂層在800℃發(fā)射率降低的原因,1000℃燒結(jié)后形成了藍色的涂層,Co Mo O4的含量是相對增加的。涂層的抗熱震性能分析得到,400℃下熱固化以及升溫速率為5℃/min得到的涂層抗熱震性能是最好的,以雙官能型的POSS為粘結(jié)劑的效果較好,同樣的Zr O2的加入使得熱振循環(huán)次數(shù)增加。紅外發(fā)射率的結(jié)果顯示,過渡金屬的添加,也就是Si C-Mo Si2-Al2O3-Co3O4-Ni O-Zr O2體系,使得涂層400℃下的發(fā)射率增加,同時在11~22μm波段范圍內(nèi)是平穩(wěn)的。
[Abstract]:Infrared radiation materials are now widely used in industrial furnaces and spaceflight, especially in aerospace, where large amounts of heat are generated as spacecraft return to the ground through the atmosphere. If heat is not released in time, it is a fatal damage to spacecraft. Therefore, the study of thermal protection system has attracted much attention. High emission materials can emit heat in the form of radiation from the substrate surface. So coating the high emission material on the spacecraft can effectively solve the problem of overheating on the surface. The current research focus is to improve the emissivity and thermal shock resistance of the coating. The main purpose of this experiment is to prepare. High emission coatings with good thermal shock resistance were prepared. We used POSS sol as binder. The multicomponent composite was realized by adding transition metal oxide (TMOX) as the main raw material, and the coating was prepared by ball milling. The POSS sol and coating were coated on the ceramic substrate in turn, and the coating was obtained after thermal curing. The surface and section morphology of the coating were tested and analyzed by SEM. Finally, the emissivity and thermal shock resistance of the coating were tested and analyzed. The results were obtained by analyzing the XRD test. At 800 鈩,
本文編號:1426987
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1426987.html
最近更新
教材專著