天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 材料論文 >

孔隙率對2D-FGM板瞬態(tài)熱應力的影響

發(fā)布時間:2018-01-12 10:24

  本文關鍵詞:孔隙率對2D-FGM板瞬態(tài)熱應力的影響 出處:《河北工程大學》2015年碩士論文 論文類型:學位論文


  更多相關文章: 2D-FGM板 有限單元法 瞬態(tài)熱應力 孔隙率


【摘要】:21世紀,功能梯度材料(Functionally Graded Matiral,簡稱FGM)已憑借其耐熱沖擊性、導電絕緣雙重性、生物相容性等諸多優(yōu)良特性得到了國內外學者高度重視,并在航空航天、光電工程、生物醫(yī)學等領域得以廣泛的應用。本文基于有限元法對常物性Ti-6Al-4V、Al 1100和ZrO2三種材料組成的2D-FGM矩形平板進行研究。首先應用了加權余量法和傳熱學的相關公式推導得到有限單元法的基本方程,通過FORTRAN計算機語言編寫的網格自動劃分程序和應力場有限元計算程序計算得到研究模型的熱應力分布;然后,將有限元法得到的近似解與數(shù)學解析值法得到的解析解進行誤差分析,說明了本文采用的有限元法是完全正確的;最后分析了不同孔隙率控制參數(shù)下的常物性2D-FGM矩形平板在第一類加熱邊界條件下,單側加熱、兩側加熱與四周加熱三種情況下的瞬態(tài)熱應力分布規(guī)律。2D-FGM矩形平板瞬態(tài)熱應力分布表明:當結構的單側邊界加熱函數(shù)設置為常數(shù)函數(shù)時,同一時刻下板內的熱應力分布隨Ax取值的增大,在靠近軸y=y/b=0附近區(qū)域的應力分布曲線與軸y:y/b=0的角度變;但隨Ax取值的變化,其應力分布的變化并不明顯;研究t=1.0s時刻,固定Ax=0.0不變,Ay=3.0的最大熱應力絕對值比Ay=1.0的減小了8.91%,最小熱應力絕對值增大了274.23%;而Ay=0.0固定不變,Ax=3.0的最大熱應力絕對值比Ax=1.0僅增大了0.08%,最小熱應力絕對值增大了65.92%,數(shù)據說明沿板厚度方向的孔隙率控制參數(shù)Ay對加熱熱應力的影響比沿板長度方向的孔隙率控制參數(shù)Ax的影響更為明顯;研究模型的結構幾何形狀及邊界條件均關于軸x=x/α=0.5對稱,但其應力場表現(xiàn)為非對稱分布且上邊界受到的應力絕對值最大;當結構的邊界為其它加熱函數(shù)時,改變孔隙率控制參數(shù)導致熱應力變化的規(guī)律基本一致,說明外界熱荷載的施加形式對熱應力場影響并不明顯。本文主要分析孔隙率對該矩形板加熱瞬態(tài)熱應力分布的影響,上述分析結果對設計和優(yōu)化2D-FGM矩形平板的孔隙率有著一定的參考意義。
[Abstract]:In twenty-first Century, functional gradient materials (Functionally Graded Matiral, referred to as FGM) by virtue of its thermal shock resistance, conductive insulation dual, biocompatibility of many excellent properties such as by domestic and foreign scholars attach great importance, and Optoelectronic Engineering in aerospace, biomedical and other fields, has been widely used. This paper based on the finite element method of constant physical Ti-6Al-4V, 2D-FGM and ZrO2 1100 Al rectangular plate composed of three kinds of materials were studied. The basic equations of the first application of the formula is derived by the method of weighted residuals and heat transfer by the finite element method, the grid FORTRAN computer language automatic division of the program and the stress field of finite element program to calculate the thermal stress of model then, the obtained stress distribution; finite element method analytical approximate solution method to get the solution of error analysis and mathematical analysis, the paper use the finite element method Is completely correct; finally analyzes the different porosity control parameters often 2D-FGM rectangular plate in the first heating heating boundary conditions, unilateral, transient thermal heating and heating on both sides around three cases of stress distribution of.2D-FGM rectangular transient thermal stress distribution showed that when the unilateral boundary heating function structure set to a constant function at the same time in the distribution of the thermal stress increases with the value of Ax, in the region near the near axis y=y/b=0 stress distribution curve and the y:y/b=0 axis angle became smaller; but the change with the Ax values, the change of stress distribution is not obvious; on time t=1.0s, fixed Ax=0.0 the same, the maximum thermal stress of the Ay=3.0 absolute value is reduced by 8.91% Ay=1.0, the minimum thermal stress increases the absolute value of 274.23%; while the Ay=0.0 is fixed, the maximum thermal stress of the Ax=3.0 than the absolute value of Ax=1.0 is increased by 0 .08%, the minimum thermal stress increases the absolute value of 65.92%, data shows that the effect of porosity along the thickness direction of the heating control parameters of Ay thermal stress along the length direction of the plate than the porosity control parameters of Ax was more obvious; geometry and boundary conditions of the model are on axis x=x/ alpha =0.5 symmetry, but its the stress field by asymmetric distribution and stress on the boundary of the absolute value of the maximum; when the structure boundary for other heating function, change the control parameters lead to thermal stress change of porosity should be similar, that imposed form of external heat load on the thermal stress field effect is not obvious. This paper mainly analyzes the porosity should be the effect of pressure distribution on the transient thermal heating of the rectangular plate, the results of the design and optimization of 2D-FGM rectangular plate porosity has a certain reference value.

【學位授予單位】:河北工程大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TB34

【參考文獻】

相關期刊論文 前10條

1 許楊健,涂代惠,姜魯珍;換熱邊界下梯度功能材料板瞬態(tài)熱應力研究[J];材料科學與工程學報;2004年03期

2 許楊健;李現(xiàn)敏;文獻民;;不同變形狀態(tài)下變物性梯度功能材料板瞬態(tài)熱應力[J];工程力學;2006年03期

3 王明祿,張能輝;熱載荷下粘彈性功能梯度材料薄板的準靜態(tài)響應[J];固體力學學報;2004年04期

4 楊久俊,董延玲,林倫,吳科如;連續(xù)相組分梯度分布對水泥基材料力學性能的影響[J];硅酸鹽學報;2004年10期

5 Jerzy J.Sobczak;Ludmil Drenchev;;Metallic Functionally Graded Materials:A Specific Class of Advanced Composites[J];Journal of Materials Science & Technology;2013年04期

6 高曉菊;王伯芊;賈平斌;滿蓬;楊雙燕;燕東明;;功能梯度材料的制備技術及其研發(fā)現(xiàn)狀[J];材料導報;2014年01期

7 余蓮英;張亮亮;尚蘭歌;孫振冬;高恩來;井文奇;高陽;;功能梯度曲梁彎曲問題的解析解[J];工程力學;2014年12期

8 王慧,于冬梅;梯度功能材料研究進展[J];河北工業(yè)科技;2001年05期

9 聶國雋;徐敏;仲政;;軸向變剛度矩形截面梁的彈性及彈塑性彎曲[J];中國科學:物理學 力學 天文學;2011年01期

10 楊青;鄭百林;張鍇;朱建新;;不同模量功能梯度懸臂梁集中剪力作用下的彈性力學解[J];蘭州大學學報(自然科學版);2013年04期

,

本文編號:1413848

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1413848.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶c8404***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com