混雜纖維增強(qiáng)樹(shù)脂基摩擦材料研究
本文關(guān)鍵詞:混雜纖維增強(qiáng)樹(shù)脂基摩擦材料研究 出處:《吉林大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 樹(shù)脂基摩擦材料 陶瓷纖維 碳纖維 硬度 摩擦性能 磨損形貌
【摘要】:近年來(lái),車輛行駛速度的不斷提高,導(dǎo)致了作為剎車材料使用的摩擦材料的性能需求日益提高。因此,各種先進(jìn)的材料應(yīng)用于摩擦材料的研究中,眾多新型摩擦材料應(yīng)運(yùn)而生。 纖維增強(qiáng)樹(shù)脂基摩擦材料是具有廣泛應(yīng)用前景的一類摩擦材料。通常這類摩擦材料發(fā)揮了增強(qiáng)纖維組分的某些優(yōu)點(diǎn),使得摩擦材料擁有比傳統(tǒng)摩擦材料更優(yōu)異的性能。兩種或多種纖維混雜組成的復(fù)合纖維對(duì)摩擦材料的增強(qiáng)效果優(yōu)于單一纖維的增強(qiáng)效果。 然而,現(xiàn)階段,復(fù)合纖維的研究只局限在鋼纖維和非金屬纖維復(fù)合方面。因此,本文創(chuàng)新性地將陶瓷纖維和碳纖維混雜,組成碳纖維/硅酸鋁陶瓷纖維復(fù)合纖維,進(jìn)而研究其對(duì)摩擦材料性能的增強(qiáng)機(jī)理。 本文以丁腈橡膠改性酚醛樹(shù)脂、高嶺土、氧化鋁粉末、硫酸鋇為基體,碳纖維、硅酸鋁陶瓷纖維為增強(qiáng)體,鋁粉、硅粉、鎳粉、還原鐵粉、銅粉為摩擦性能調(diào)節(jié)劑,設(shè)計(jì)合成了樹(shù)脂基摩擦材料、硅酸鋁陶瓷纖維增強(qiáng)樹(shù)脂基摩擦材料和碳纖維/硅酸鋁陶瓷纖維增強(qiáng)樹(shù)脂基摩擦材料三大類摩擦材料。分別研究了樹(shù)脂含量、硅酸鋁陶瓷纖維含量及混雜纖維含量對(duì)摩擦材料的硬度、摩擦系數(shù)及其穩(wěn)定性和磨損率等性能的影響。 實(shí)驗(yàn)研究表明,丁腈橡膠改性酚醛樹(shù)脂添加量為18%時(shí),樹(shù)脂基摩擦材料具有良好的抗熱衰退性、穩(wěn)定的摩擦系數(shù)及較小的磨損率。 硅酸鋁陶瓷纖維的加入提高了陶瓷纖維增強(qiáng)樹(shù)脂基摩擦材料的低溫耐磨性,而隨著溫度的升高,耐磨性下降,磨損率增大。由于硅酸鋁陶瓷纖維脆性大,因此相同溫度下,纖維含量越高,摩擦系數(shù)和磨損率越大。當(dāng)陶瓷纖維含量超過(guò)9%時(shí),摩擦材料的硬度過(guò)大,不符合摩擦材料的實(shí)用規(guī)范。結(jié)果表明,硅酸鋁陶瓷纖維含量為6~9%時(shí),硅酸鋁陶瓷纖維增強(qiáng)樹(shù)脂基摩擦材料的增強(qiáng)效果達(dá)到最佳狀態(tài)。 碳纖維的耐磨性、高韌性、高導(dǎo)熱率等優(yōu)點(diǎn),能夠?qū)μ沾衫w維的缺點(diǎn)加以彌補(bǔ),從而能夠進(jìn)一步改善摩擦材料的部分性能。研究發(fā)現(xiàn),當(dāng)混雜纖維中的碳纖維含量為2~4%,陶瓷纖維含量為4~6%時(shí),摩擦材料的磨損率低,硬度適當(dāng),摩擦系數(shù)穩(wěn)定,,且抗熱衰退性好。 摩擦材料表面磨損形貌觀察后發(fā)現(xiàn),不含纖維的樹(shù)脂基摩擦材料磨損表面光滑,有魚鱗片狀翹起。陶瓷纖維脆性大,導(dǎo)致摩擦材料表面粗糙、表層剝落明顯,且裂紋發(fā)生幾率高。碳纖維的加入,能夠促進(jìn)滑移膜產(chǎn)生,使摩擦表面變得光滑。因此,復(fù)合纖維能夠有效地降低摩擦表面的粗糙度,阻止剝落和裂紋的發(fā)生。
[Abstract]:In recent years, with the increasing of vehicle speed, the performance requirements of friction materials used as brake materials are increasing day by day. Therefore, various advanced materials are used in the research of friction materials. Many new friction materials emerge as the times require. Fiber reinforced resin based friction material is a kind of friction material with wide application prospect. Usually, this kind of friction material has some advantages of reinforcing fiber component. The friction material has better performance than the traditional friction material, and the reinforced effect of two or more fiber hybrid fibers is better than that of the single fiber. However, at present, the research of composite fiber is limited to the composite of steel fiber and non-metallic fiber. Therefore, the ceramic fiber and carbon fiber are mixed creatively in this paper. Carbon fiber / aluminum silicate ceramic fiber composite fiber was formed, and the strengthening mechanism of friction material was studied. In this paper, nitrile rubber modified phenolic resin, kaolin, alumina powder, barium sulfate as matrix, carbon fiber, aluminum silicate ceramic fiber as reinforcement, aluminum powder, silicon powder, nickel powder, reduced iron powder. The resin based friction material was designed and synthesized with copper powder as friction performance regulator. Aluminum silicate ceramic fiber reinforced resin based friction materials and carbon fiber / aluminum silicate ceramic fiber reinforced resin based friction materials three kinds of friction materials were studied respectively. The effects of the content of aluminum silicate ceramic fiber and hybrid fiber on the hardness, friction coefficient, stability and wear rate of friction materials. The experimental results show that the resin based friction material has good heat resistance, stable friction coefficient and low wear rate when the content of NBR modified phenolic resin is 18%. The addition of aluminum silicate ceramic fiber improves the low temperature wear resistance of ceramic fiber reinforced resin based friction material, but with the increase of temperature, the wear resistance decreases and the wear rate increases. Therefore, the higher the fiber content at the same temperature, the greater the friction coefficient and wear rate. When the ceramic fiber content is more than 9, the hardness of the friction material is too large, which does not conform to the code of practice of friction material. When the content of aluminum silicate ceramic fiber is 6 ~ 9, the reinforcement effect of resin based friction material reinforced by aluminum silicate ceramic fiber reaches the optimum state. The advantages of carbon fiber, such as wear resistance, high toughness and high thermal conductivity, can remedy the shortcomings of ceramic fiber and further improve some properties of friction materials. When the content of carbon fiber in hybrid fiber is 2 ~ 4 and the content of ceramic fiber is 4 ~ 6, the wear rate of friction material is low, the hardness is appropriate, the friction coefficient is stable, and the heat resistance is good. After observing the wear morphology of friction material, it was found that the resin based friction material without fiber had a smooth wear surface and a fish scale, and the ceramic fiber had a large brittleness, which resulted in the rough surface of the friction material and the obvious exfoliation of the surface layer. The addition of carbon fiber can promote the formation of slip film and make the friction surface smooth. Therefore, the composite fiber can effectively reduce the roughness of the friction surface and prevent the spalling and cracking.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB34
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭新濤;復(fù)合材料摩擦片熱衰退機(jī)理初步研究[J];玻璃鋼/復(fù)合材料;2002年06期
2 陳曉虎;氧化鋁陶瓷摩擦材料制備的初步研究[J];材料導(dǎo)報(bào);2000年05期
3 徐欣,程光旭,劉飛清,鄭萬(wàn)春;樹(shù)脂基纖維增強(qiáng)摩阻材料研究進(jìn)展[J];材料科學(xué)與工程學(xué)報(bào);2005年03期
4 史國(guó)普;王志;趙軍;侯憲欽;;莫來(lái)石纖維對(duì)氧化鋁陶瓷性能的影響[J];稀有金屬材料與工程;2009年S2期
5 劉耀宗,陳剛,滕杰,李翊;樹(shù)脂基摩擦材料二次壓制工藝研究[J];非金屬礦;2004年06期
6 吳其勝;張叢見(jiàn);張少明;;陶瓷纖維增強(qiáng)摩擦材料的制備與研究[J];非金屬礦;2009年02期
7 閻致恒;蘇堤;;鋼纖維與硅氧鋁陶瓷纖維對(duì)樹(shù)脂基摩擦材料性能的影響[J];粉末冶金材料科學(xué)與工程;2011年01期
8 李紹忠,羅成;我國(guó)汽車用非石棉摩擦材料的現(xiàn)狀[J];粉末冶金工業(yè);2000年02期
9 齊海波,丁占來(lái),樊云昌,姜稚清;SiC顆粒增強(qiáng)鋁基復(fù)合材料制動(dòng)盤的研究[J];復(fù)合材料學(xué)報(bào);2001年01期
10 吳茂松,JimTaylor;潛力巨大的陶瓷盤形制動(dòng)器[J];國(guó)外機(jī)車車輛工藝;1999年05期
相關(guān)博士學(xué)位論文 前1條
1 韓野;陶瓷纖維摩擦材料的制備及摩擦機(jī)制研究[D];中國(guó)海洋大學(xué);2008年
本文編號(hào):1405824
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1405824.html