納米聚硅材料在低滲致密油藏開采中的應(yīng)用基礎(chǔ)研究
本文關(guān)鍵詞:納米聚硅材料在低滲致密油藏開采中的應(yīng)用基礎(chǔ)研究 出處:《河南大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 納米聚硅 化學(xué)破碎 雙親性納米微粒 降壓增注 壓裂支撐劑
【摘要】:低滲致密油藏巖石埋藏致密,孔隙喉道細小,孔隙度低,滲透性很差,油井一次采收率低,其有效開采一直是世界性難題。通過儲層改造和巖石表面改性等手段能夠提高低滲致密油藏注水開采效率,納米降壓增注技術(shù)是一種新型低滲油藏巖石表面改性降壓增注技術(shù)。近年來,河南大學(xué)研發(fā)了系列疏水性納米聚硅(二氧化硅),在低滲油藏注水開采過程中具有很好的降壓增注效果。在前期研究基礎(chǔ)上,本文進一步制備了常溫下水分散的超疏水納米聚硅降壓增注劑,并建立了化學(xué)破碎納米聚硅的方法和技術(shù)。同時,以疏水納米Si O2改性石英砂,制備了具有高導(dǎo)流能力的石英砂壓裂支撐劑。主要研究內(nèi)容及研究結(jié)果包括以下幾個方面:1、利用激光粒度分布儀、透射電子電鏡、場發(fā)射掃描電子顯微鏡、光學(xué)接觸角儀、多功能巖芯驅(qū)替實驗裝置等分析測試手段,研究了NPS-W型水基納米減阻增注劑在水中的相分散和相分離行為。同時建立了一種化學(xué)破碎納米聚硅微粒的方法和技術(shù),通過化學(xué)破碎和微乳液穩(wěn)定技術(shù),可實現(xiàn)對納米聚硅微乳液的粒徑調(diào)控。考察了溫度、濃度、時間、壓力等因素對水基納米聚硅在巖石表面吸附行為的影響及其在低滲油藏中的減阻增注行為,探索了化學(xué)疏水和結(jié)構(gòu)疏水的作用機理。討論了NPS-W水基納米聚硅微乳液多次注入對水相滲透率的影響,考察了潤濕性對注水臨界驅(qū)動壓力的影響,為水基納米聚硅在低滲致密油藏中的可控應(yīng)用提供理論基礎(chǔ)。2、NPS-W水基納米聚硅增注劑為白色粉末,使用過程中需要80℃高溫配液,對現(xiàn)場施工造成了一定的困難。本文制備了一種高濃度小粒徑納米聚硅乳液(記為NPS-L),可在常溫下稀釋得到澄清透明的納米聚硅增注劑,穩(wěn)定性好,平均粒徑為6~7 nm。利用人造巖芯和長慶油田天然巖芯進行驅(qū)替實驗評價,結(jié)果表明,NPS-L型納米聚硅乳液在超低滲和特低滲巖芯中降壓增注效果明顯,具有長效降壓增注作用,該產(chǎn)品已在長慶油田試井。3、利用傅里葉變換紅外光譜儀、比表面積及孔徑分析儀等測試手段對疏水性NPS-Z、水基NPS-W和NPS-L增注液所分離出的納米聚硅微粒進行了對比分析,發(fā)現(xiàn)NPS-W和NPS-L疏水性納米聚硅微粒表面裸露出來更多的活性羥基,比表面積增加一倍以上,具有類似于表面活性劑的兩親性和相轉(zhuǎn)移功能。這種特殊結(jié)構(gòu)的雙親性納米微粒具有選擇吸附性:極性端能夠與強極性的巖石表面發(fā)生高效吸附,非極性端裸露在外,形成疏水性表面,提高納米微粒對巖石表面的改性效果。同時雙親性納米微粒所具有的運移、乳化、吸附等特性,使其有望作為功能化合物載體和高效驅(qū)油材料。4、壓裂技術(shù)是利用高壓將液體泵入地層而形成巖層裂隙,石英砂作為支撐使其不因應(yīng)力釋放而閉合。本文采用表面修飾技術(shù),利用疏水性納米二氧化硅制備了疏水親油性石英砂支撐劑。探討了納米Si O2與石英砂之間的作用機制,研究了溫度、時間、濃度等因素對其作用強度的影響。通過模擬填砂管驅(qū)替實驗發(fā)現(xiàn),該改性石英砂支撐劑具有優(yōu)異的水相導(dǎo)流能力,水相流量提高112.9%。
[Abstract]:Dense reservoir rock buried low permeability, small pore throat, low porosity, permeability is very poor, well a low recovery rate, the effective mining has been a worldwide problem. Through the reservoir rock and surface modification methods can improve the low permeability reservoir water flooding efficiency, nano augmented injection technology is a new type of low permeability reservoir rock surface modified decompression and augmented injection technology. In recent years, Henan University has developed a series of hydrophobic nano poly silicon (silicon dioxide), in the low permeability reservoir water flooding process has the effect of increasing injection well pressure. On the basis of previous study, making further dispersed super hydrophobic nano water at normal temperature poly silicon injection agent to prepare the buck, and established the method and technology of chemical nano poly silicon. At the same time, quartz sand modified by hydrophobic nano Si O2, were prepared with high conductivity of quartz sand fracturing proppant. The research content and research results are as follows: 1, using laser particle size analyzer, transmission electron microscopy, field emission scanning electron microscopy, optical contact angle meter, experimental device and other analytical methods for multifunctional core flooding, study the NPS-W type water-based nano drag injection agent in water phase dispersion and phase separation at the same time. A method and technology of chemical nano poly silicon particles, through chemical and micro emulsion stabilization technology, can achieve the nano poly silicon micro emulsion particle size control. The effects of temperature, concentration, time, factors affecting the pressure of water-based nanometer polysilicon on the surface adsorption behavior of rock and in the low permeability reservoir in drag reduction and increase injection behavior, explore the mechanism of chemical structure and hydrophobic hydrophobic. Discusses the NPS-W water-based nanometer polysilicon micro emulsion injection effect on multiple water permeability, examine the wetting Effect of water injection pressure for critical driving, water-based nanometer polysilicon in low permeability and provide a theoretical basis for the application of controllable.2 tight oil reservoirs in NPS-W, water-based nanometer polysilicon injection agent is white powder, 80 degrees high temperature distribution of liquid in the use process and cause some difficulties in the construction site. This paper was prepared. A high concentration of small size nano poly silicon emulsion (NPS-L), at room temperature can be diluted to get transparent nano poly silicon injection agent, good stability, average particle size of 6~7 nm. using artificial cores and Changqing Oilfield natural core flooding experiment evaluation results show that NPS-L nano poly silicon in emulsion ultra low and extra low permeability core decompression and augmented injection effect is obvious, has the function of injection by acting antihypertensive, this product has been in the Changqing oil field testing.3, using Fourier transform infrared spectrometer, the hydrophobic NPS surface area and pore size analyzer test means -Z, NPS-W and NPS-L by nano water-based liquid separated poly silicon particles were analyzed, and found that NPS-W NPS-L hydrophobic nano poly silicon particles surface exposed more hydroxyl groups, more than doubled the surface area, which is similar to the two amphiphilic surfactant and phase transfer function of parents. The special structure of nano particles with selective adsorption of the polar end can efficiently adsorb and strong polar non polar end surface of rock, exposed, forming a hydrophobic surface, improve the nanoparticles on the rock surface modification effect. At the same time migration, amphiphilic nanoparticles with emulsification, adsorption other characteristics, it is expected to function as a carrier and efficient flooding compound material.4, fracturing technology is the use of high pressure liquid pump into the formation and the formation of rock fracture, quartz sand as the support for stress release in the closure. The surface modification technology, hydrophobic quartz sand proppant prepared by hydrophobic nano silica. Study on interaction mechanism between nano Si O2 and quartz sand, the time of temperature, concentration and other factors on the effect of strength. Through the simulation of sand filling tube displacement experiment showed that the modified quartz sand proppant has excellent water diversion, water flow increased 112.9%.
【學(xué)位授予單位】:河南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB383.1;TE34
【相似文獻】
相關(guān)期刊論文 前10條
1 劉中信;接力式酸降壓增注工藝技術(shù)的應(yīng)用[J];石油與天然氣化工;2004年06期
2 陳冠良;劉恒錄;程艷會;嚴長青;盧建強;;層內(nèi)自生弱酸降壓增注技術(shù)在文南油田的應(yīng)用[J];內(nèi)蒙古石油化工;2006年05期
3 張影;李攀;王長俊;;層生氣降壓增注技術(shù)在臨盤低滲井的應(yīng)用[J];內(nèi)蒙古石油化工;2008年02期
4 劉衛(wèi)東;;低滲透油田潤濕反轉(zhuǎn)降壓增注技術(shù)及應(yīng)用[J];遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版);2009年S1期
5 谷同杰;谷紅波;;控制工藝材料質(zhì)量 提高降壓增注效果[J];石油工業(yè)技術(shù)監(jiān)督;2011年03期
6 付亞榮;;改性孿連季銨鹽類注水增注劑的降壓增注實踐[J];石油石化節(jié)能;2012年02期
7 劉俊龍;;多氫酸酸化降壓增注技術(shù)的研究應(yīng)用[J];中國石油和化工標準與質(zhì)量;2013年04期
8 嚴秀花;劉磊;;文88塊沙三中降壓增注研究[J];經(jīng)營管理者;2013年10期
9 劉恒;;復(fù)合活性體系降壓增注技術(shù)[J];中國石油和化工標準與質(zhì)量;2013年12期
10 薛建強;覃孝平;賴南君;葉仲斌;李函;;超低滲透油田降壓增注體系的研究與應(yīng)用[J];巖性油氣藏;2013年06期
相關(guān)會議論文 前3條
1 李世榮;齊亞民;丁金崗;趙元壽;王海;羅曉莉;;三疊系長2油藏注水井降壓增注技術(shù)研究與應(yīng)用[A];石化產(chǎn)業(yè)創(chuàng)新·綠色·可持續(xù)發(fā)展——第八屆寧夏青年科學(xué)家論壇石化專題論壇論文集[C];2012年
2 李世榮;李毓楓;郭子龍;范春林;張麗平;喬玖春;;靖安油田大路溝一區(qū)表面活性劑降壓增注研究[A];低碳經(jīng)濟促進石化產(chǎn)業(yè)科技創(chuàng)新與發(fā)展——第九屆寧夏青年科學(xué)家論壇石化專題論壇論文集[C];2013年
3 李世榮;李毓楓;岳建平;張麗平;史瑞雪;楊鵬;;高壓注水區(qū)降壓增注工藝試驗與推廣[A];青年人才與石化產(chǎn)業(yè)創(chuàng)新發(fā)展——第七屆寧夏青年科學(xué)家論壇論文集[C];2011年
相關(guān)重要報紙文章 前2條
1 通訊員 張艷;應(yīng)用水力深穿透技術(shù) 探索降壓增注新方法[N];大慶日報;2010年
2 楊君;納米材料解決注水難題[N];中國石化報;2007年
相關(guān)碩士學(xué)位論文 前10條
1 劉培松;納米聚硅材料在低滲致密油藏開采中的應(yīng)用基礎(chǔ)研究[D];河南大學(xué);2015年
2 王磊;低滲透油藏納米粉體材料降壓增注試驗研究[D];中國石油大學(xué);2008年
3 李波;特地滲透扶余油層降壓增注工藝技術(shù)研究[D];東北石油大學(xué);2012年
4 趙貴林;低滲油藏高壓注水區(qū)塊降壓增注研究[D];西南石油大學(xué);2014年
5 張智斌;安塞油田降壓增注工藝技術(shù)研究[D];西安石油大學(xué);2013年
6 劉美遙;海上B油田低滲儲層注入水配伍性及降壓增注研究[D];西南石油大學(xué);2015年
7 鄒遠北;表面活性劑降壓增注機理研究及應(yīng)用[D];中國石油大學(xué);2010年
8 李俊;低滲透油藏降壓增注技術(shù)研究[D];成都理工大學(xué);2011年
9 歐志杰;低滲透油田表面活性劑降壓增注實驗研究[D];東北石油大學(xué);2011年
10 李丹丹;納米聚硅降壓增注技術(shù)在吳起油田的研究與應(yīng)用[D];西安石油大學(xué);2014年
,本文編號:1403712
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1403712.html