高儲(chǔ)能密度玻璃陶瓷復(fù)合材料的充放電性能研究
本文關(guān)鍵詞:高儲(chǔ)能密度玻璃陶瓷復(fù)合材料的充放電性能研究 出處:《北京有色金屬研究總院》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 玻璃陶瓷 介電性能 能量密度 能量釋放效率 脈沖放電
【摘要】:本文利用可控結(jié)晶技術(shù),通過改變結(jié)晶工藝,制備了PbO-SrO-Na2O-Nb2O5-SiO2 (PSNNS)、PbO-BaO-Na2O-Nb2O5-SiO2 (PBNNS)和 BaO-SrO-Na2O-Nb2O5-SiO2 (BSNNS)三種體系玻璃陶瓷復(fù)合材料,分析了其結(jié)晶行為,研究了結(jié)晶條件改變對(duì)玻璃陶瓷介電性能、充放電性能的影響,結(jié)合微觀分析與阻抗譜結(jié)果探討了影響材料特性的原因。本文的主要內(nèi)容如下:根據(jù)差熱分析結(jié)果,確定PSNNS 、BSNNS及PBNNS玻璃陶瓷結(jié)晶溫度為750℃與900℃,在此溫度下將樣品的結(jié)晶時(shí)間由1 min增加至1000 min,制備了一系列玻璃陶瓷樣品。X射線衍射結(jié)果表明,結(jié)晶在很短時(shí)間內(nèi)完成,900℃下析出相為NaNbO3高介電陶瓷相與相應(yīng)體系的鎢青銅陶瓷相,隨著結(jié)晶時(shí)間的增加,析出相恒定,結(jié)晶峰強(qiáng)度基本不變。進(jìn)一步的透射電鏡結(jié)果表明,析出陶瓷相均勻彌散分布于玻璃基體中,隨結(jié)晶時(shí)間增加,晶粒形貌基本不變,晶粒尺寸逐漸由幾十納米增加到幾百納米,最大不超過600 nm。采用LCR分析儀與鐵電測(cè)試儀測(cè)試了玻璃陶瓷的介電性能。發(fā)現(xiàn)900℃結(jié)晶樣品較750℃樣品具有更高的介電常數(shù),更強(qiáng)的極化特性;隨著結(jié)晶時(shí)間增加,玻璃陶瓷樣品的介電常數(shù)與介電損耗逐漸增大;極化曲線總體上十分纖細(xì),極化強(qiáng)度與電場(chǎng)強(qiáng)度呈線性關(guān)系,隨結(jié)晶時(shí)間的增加,剩余極化強(qiáng)度逐漸增大,玻璃陶瓷樣品的鐵電特性增強(qiáng)。采用極化曲線與脈沖放電回路兩種測(cè)量方法分別研究了玻璃陶瓷在準(zhǔn)靜態(tài)放電與脈沖放電下的能量特性。在準(zhǔn)靜態(tài)放電條件下,PSNNS與PBNNS玻璃陶瓷均具有較高的能量密度,在10 kV/mm場(chǎng)強(qiáng)下分別達(dá)到0.172 J/cm3與0.197 J/cm3, PSNNS與BSNNS玻璃陶瓷具有更高的能量釋放效率,分別高于85.0%與83.5%;隨著結(jié)晶時(shí)間增加,玻璃陶瓷能量密度逐漸增加,能量釋放效率逐漸降低。在脈沖放電條件下,隨結(jié)晶時(shí)間增加,PSNNS玻璃陶瓷能量密度逐漸增加,能量釋放效率顯著降低;脈沖能量效率介于65.1-82.4%,明顯低于相應(yīng)PSNNS的準(zhǔn)靜態(tài)能量釋放效率。電化學(xué)阻抗譜分析結(jié)果表明,隨著結(jié)晶時(shí)間增加,極化弛豫時(shí)間增加;對(duì)于同一體系樣品,晶相弛豫時(shí)間與界面弛豫時(shí)間差異巨大。這可能是造成充放電性能隨結(jié)晶時(shí)間逐漸變化,且脈沖條件下能量釋放效率大幅低于準(zhǔn)靜態(tài)條件下的原因。
[Abstract]:Using the controllable crystallization technology, by changing the crystallization process, to prepare PbO-SrO-Na2O-Nb2O5-SiO2 (PSNNS), PbO-BaO-Na2O-Nb2O5-SiO2 (PBNNS) and BaO-SrO-Na2O-Nb2O5-SiO2 (BSNNS) three system glass ceramic composite materials, analysis of the crystallization behavior, studied crystallization conditions change on the electrical properties of glass ceramics. The effect of charge discharge performance, combined with the microscopic analysis and impedance spectroscopy results discussed the influencing factors of material properties. The main contents of this paper are as follows: to determine the PSNNS according to the results of differential thermal analysis, BSNNS, and PBNNS glass ceramics crystallization temperature is 750 DEG and 900 DEG C, the temperature of crystallization time of samples increased from 1 min to 1000 min, the preparation of a series of glass ceramics sample.X X-ray diffraction shows that the crystal in a very short period of time, at a temperature of 900 DEG C to precipitate tungsten bronze ceramics NaNbO3 high dielectric ceramics and corresponding system with phase. Increase the crystallization time, constant precipitation, crystallization peak strength basically unchanged. TEM further results show that the precipitation of ceramic phase is uniformly dispersed in the glass matrix, with the crystallization time increases, the grain morphology is basically unchanged, the grain size gradually increased from tens of nanometers to hundreds of nanometers, the maximum not more than 600 dielectric properties of nm. glass ceramics was tested by LCR analyzer and ferroelectric tester. 900 C 750 C samples than crystalline samples has higher dielectric constant, the polarization characteristics of stronger; as the crystallization time increases, the glass ceramics, the dielectric constant and dielectric loss increased; polarization curve on the whole very slender, linear polarization with the electric field strength, with the increase of crystallization time, the remanent polarization increases gradually, enhance the ferroelectric properties of glass ceramic samples. Using polarization curve and pulse discharge circuit two Measurement techniques are used to study the energy characteristics of glass ceramics in quasi static discharge and pulse discharge. The discharge in the quasi-static conditions, PSNNS and PBNNS glass ceramics have high energy density, 10 kV/mm in the field were respectively 0.172 J/cm3 and 0.197 J/cm3, PSNNS and BSNNS glass ceramics have higher energy releasing efficiency. More than 85% and 83.5% respectively; as the crystallization time increases, the energy density of glass ceramics gradually increased, energy releasing efficiency decreased gradually. The pulse discharge conditions, with the increase of crystallization time, PSNNS glass ceramic energy density increases gradually, the energy release efficiency is significantly reduced; the pulse energy efficiency is 65.1-82.4%, significantly lower than the corresponding quasi-static energy releasing efficiency PSNNS the electrochemical impedance spectroscopy. The results showed that with the increase of crystallization time, polarization relaxation time increases; for the same sample system, phase relaxation The difference between the time of relaxation and the interfacial relaxation time is very large. This may be the gradual change of charge discharge performance with the crystallization time, and the energy release efficiency under pulse condition is much lower than that under quasi-static condition.
【學(xué)位授予單位】:北京有色金屬研究總院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB33
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張凱;范敬輝;馬艷;吳菊英;;超聲波場(chǎng)下相分離法制備Ag/PA-6復(fù)合粒子[J];化工進(jìn)展;2011年04期
2 周清林;喬及森;陳劍虹;朱亮;;鋁合金CO_2激光與TIG薄板焊接接頭力學(xué)性能分析[J];焊接學(xué)報(bào);2006年08期
3 李業(yè)欣;;材料表面殘余應(yīng)力測(cè)試技術(shù)研究[J];沈陽(yáng)航空航天大學(xué)學(xué)報(bào);2011年04期
4 李亞芬;張濱;劉桂英;張永杰;;聚硅氧烷混凝土引氣劑的試驗(yàn)研究[J];黑龍江水專學(xué)報(bào);2006年03期
5 張凱;范敬輝;馬艷;吳菊英;;Ag/PMMA復(fù)合粒子的制備及表征[J];化學(xué)工程師;2011年01期
6 陳捷,張孝儀,陳松林,程克梅,周建華,王曉川,劉家彬;BTF變色對(duì)其熱安定性和與PVB等相容性的影響[J];化學(xué)研究與應(yīng)用;2001年04期
7 葉建鑄;楊嘉祥;王新掌;黃程偉;;含水量對(duì)石蠟介電特性的影響[J];電工材料;2009年03期
8 林成新,谷南駒,張建軍,劉慶鎖;Fe-Mn-Si形狀記憶合金應(yīng)力誘發(fā)馬氏體相變的X射線分析[J];材料熱處理學(xué)報(bào);2004年03期
9 劉林林;林成新;孫德平;周超玉;;Fe-Mn-Si合金水泥約束下的應(yīng)力誘發(fā)馬氏體逆相變[J];材料熱處理學(xué)報(bào);2010年06期
10 王立軍;余偉;武會(huì)賓;蔡慶伍;;Si對(duì)超高強(qiáng)鋼殘留奧氏體回火穩(wěn)定性與力學(xué)性能的影響[J];材料熱處理學(xué)報(bào);2010年10期
相關(guān)博士學(xué)位論文 前10條
1 王義飛;新型照明顯示器件用鋁酸鹽熒光粉的優(yōu)化研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
2 馬紫微;HfO_2薄膜的濺射制備及其性能研究[D];蘭州大學(xué);2011年
3 趙燕春;Cu基塊體金屬玻璃的組織、熱穩(wěn)定性和力學(xué)性能研究[D];蘭州理工大學(xué);2010年
4 馬海健;元素添加對(duì)鐵基非晶非晶形成能力、晶化及性能的影響[D];山東大學(xué);2011年
5 顏濤;高品質(zhì)鈮酸鋰、鉭酸鋰晶體的生長(zhǎng)、結(jié)構(gòu)與性質(zhì)研究[D];山東大學(xué);2011年
6 余樂;新型固態(tài)薄膜電池及性能研究[D];復(fù)旦大學(xué);2011年
7 胡松青;高含H_2S、CO_2油氣田緩蝕劑的設(shè)計(jì)與合成[D];中國(guó)石油大學(xué);2010年
8 張欣盟;大面積鋁合金局部放電微弧氧化及熱阻隔膜層制備[D];哈爾濱工業(yè)大學(xué);2011年
9 孫會(huì)剛;水分對(duì)油紙絕緣熱老化及壽命的影響與熱老化程度表征研究[D];重慶大學(xué);2011年
10 魏雪松;低溫?zé)Y(jié)Ba_(6-3x)(Nd_(1-y)Bi_y)_(8+2x)Ti_(18)O_(54)體系陶瓷研究[D];天津大學(xué);2011年
,本文編號(hào):1386304
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1386304.html