三維多孔氧化鐵、硫化鎳復(fù)合材料的制備及其電化學(xué)性能表征
發(fā)布時(shí)間:2018-01-05 17:39
本文關(guān)鍵詞:三維多孔氧化鐵、硫化鎳復(fù)合材料的制備及其電化學(xué)性能表征 出處:《中原工學(xué)院》2017年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 復(fù)合材料 氧化鐵 硫化鎳 離子置換 超級(jí)電容器
【摘要】:隨著經(jīng)濟(jì)的飛速發(fā)展和科學(xué)技術(shù)的快速進(jìn)步,傳統(tǒng)電容器和二次電池的發(fā)展已經(jīng)不能夠完全滿足人們?cè)诟鞣N場(chǎng)合下對(duì)能量?jī)?chǔ)存與轉(zhuǎn)換設(shè)備的需求。超級(jí)電容器,一種介于兩者之間的新型能量轉(zhuǎn)換裝置,因具有快速充放電、功率密度高、循環(huán)穩(wěn)定性好等突出優(yōu)點(diǎn),引起了廣大科研工作者的關(guān)注。電極材料作為超級(jí)電容器裝置的重要組成之一,電極材料的多樣性選擇使得表現(xiàn)出不同的超級(jí)電容器的性能,也因此為廣大科研工作者的研究帶來(lái)了許多挑戰(zhàn)。其中,過(guò)渡金屬化合物自身因具有多種可變價(jià)態(tài),儲(chǔ)量豐富,理論容量高及化學(xué)穩(wěn)定性等優(yōu)點(diǎn),被認(rèn)為是超級(jí)電容器中可選的最佳電極材料。目前,過(guò)渡金屬化合物的自身電子傳導(dǎo)率低,自身導(dǎo)電性差而不能完全發(fā)揮自身性能。所以,目前常見(jiàn)的方案是通過(guò)提高電極材料的導(dǎo)電性和新型復(fù)合材料的制備來(lái)改善電極材料在超級(jí)電容器中的應(yīng)用。我們以這兩點(diǎn)為出發(fā)點(diǎn),選取商業(yè)化的三聚氰胺碳泡沫和三維網(wǎng)狀金屬泡沫鎳作為電極材料的導(dǎo)電載體來(lái)提高其導(dǎo)電性,并通過(guò)形貌可控設(shè)計(jì)及離子置換方法實(shí)現(xiàn)金屬?gòu)?fù)合復(fù)合材料的制備來(lái)提高材料的性能,具體工作如下:(1)通過(guò)簡(jiǎn)單的一步溶劑熱法合成出Fe_3O_4納米球,并以碳化過(guò)的商業(yè)化三聚氰胺碳泡沫作為導(dǎo)電載體,Fe_3O_4均勻的沉積到碳泡沫的三維多孔骨架表面,形成Fe_3O_4/CF復(fù)合材料。電化學(xué)測(cè)試表明,當(dāng)電流密度為1 A g-1時(shí),比容量可從55.66 F g-1提升到130.59 F g-1,兼具良好的循環(huán)穩(wěn)定性。本工作選用廉價(jià)的碳泡沫作為導(dǎo)電載體來(lái)提升材料的性能,為氧化鐵的商業(yè)化研究提供了一種可能。(2)以泡沫鎳作為導(dǎo)電基底和鎳源,通過(guò)原位合成方法合成具有鳥(niǎo)巢狀結(jié)構(gòu)的一維納米線(直徑為80 nm)Ni_3S_2的可控設(shè)計(jì)。為了提高Ni_3S_2的電化學(xué)性質(zhì),我們引入了導(dǎo)電性更好的過(guò)渡金屬離子鈷作為有益離子與Ni_3S_2進(jìn)行離子置換,通過(guò)控制反應(yīng)時(shí)間實(shí)現(xiàn)了鎳鈷元素之間的可控轉(zhuǎn)變和形貌結(jié)構(gòu)遺傳。制備的多元材料進(jìn)行兩電極器件性能測(cè)試結(jié)果表明,制備的Ni@Ni_(1.4)Co_(1.6)S_2的倍率性能和比容量都有了很大的提升。本部分工作為材料改性及復(fù)合材料制備提供了很有價(jià)值的參考。同時(shí),通過(guò)金屬基底原位生長(zhǎng)的電極材料表現(xiàn)出了很好的柔韌性,為柔性器件的研究也提供了可行的方案。(3)以泡沫鎳為導(dǎo)電基底和鎳源,原位生長(zhǎng)法和部分離子置換方法制備了具有分等級(jí)結(jié)構(gòu)的薰衣草狀Ni@Ni_3S_2/Co_9S_8/Ni Se。首先,制備出具有分等級(jí)結(jié)構(gòu)的Ni@Ni_3S_2。其次,為了提高材料的性能,以硒離子和鈷離子作為有益的陰離子和陽(yáng)離子來(lái)進(jìn)行部分離子置換反應(yīng),實(shí)現(xiàn)了Ni_3S_2的薰衣草狀分等級(jí)結(jié)構(gòu)的保持。通過(guò)一系列相關(guān)的電化學(xué)表征結(jié)果表明,通過(guò)離子置換方法得到的多組分復(fù)合材料可以有效提高材料的性能。本部分工作證明了結(jié)構(gòu)的設(shè)計(jì)和離子置換方法都可用來(lái)提升電極材料的電化學(xué)性能。
[Abstract]:With the rapid development of the economy and the development of science and technology, the traditional capacitor and the two battery is not able to fully meet the demand for energy conversion and storage equipment on various occasions. The super capacitor, a new type of energy conversion device in between, because of its fast charging and discharging, high power density the outstanding advantages, good cycle stability, has aroused the attention of scientists. As an important component of electrode material for super capacitor device, electrode material diversity choice makes the performance of super capacitor is different, so for the study of scientific research workers brought many challenges. Among them, the transition metal compound because of its many variable valence, abundant reserves, high theoretical capacity and chemical stability, it is considered as the best choice of electrode material in super capacitor The material. At present, transition metal compounds own electronic conduction rate is low, its poor conductivity and can not fully play their performance. Therefore, the common solution is prepared by application to enhance the conductivity and composite electrode materials for improved electrode materials in supercapacitors. We take this as a starting point point, selected commercial melamine carbon foam and three-dimensional metal nickel foam as a conductive carrier electrode material to improve its conductivity, and the controllable morphology design and ion replacement method for metal composite preparation of composite materials to improve the properties of the materials, the specific work is as follows: (1) through a one-step solvothermal method is simple the synthesis of Fe_3O_4 nanoparticles, and the commercialization of the carbide carbon foam melamine as the conducting carrier, three-dimensional porous surface Fe_3O_4 uniform deposition of carbon foam, the formation of Fe_3O The _4/CF composite material. The electrochemical tests show that when the current density is 1 A g-1, from F g-1 55.66 than the capacity can be raised to 130.59 F g-1, with good cycle stability. The selection of cheap carbon foam as a conductive carrier to improve the performance of materials, provides a possibility for the study of commercial iron oxide. (2) with nickel foam as substrate and nickel source, by in situ synthesis method with nanowires nest like structure (diameter 80 nm) controlled Ni_3S_2 design. In order to improve the electrochemical properties of Ni_3S_2 transition metal ions cobalt, we introduce better conductivity as a useful ion and Ni_3S_2 ion exchange. By controlling the reaction time to achieve the transformation and controllable morphology between nickel and cobalt elements. Genetic material prepared by multiple performance test results of two electrodes of the device showed that the preparation of Ni@Ni_ (1.4) Co_ (1.6) The rate performance of S_2 and capacity have been greatly improved. This part of the work and the preparation of composite materials provides a valuable reference for material modification. At the same time, through the in situ growth of base metal electrode material showed good flexibility of flexible device provides a feasible solution. (3) on the foam nickel substrate and nickel source, in situ growth and partial ion exchange were prepared with lavender like Ni@Ni_3S_2/Co_9S_8/Ni Se. hierarchical structure first, prepared with graded structure Ni@Ni_3S_2. second, in order to improve the performance of materials, using selenium ions and cobalt ions as beneficial and anion to be part of cationic ion replacement reaction, keep the realization of the Ni_3S_2 shaped Lavender graded structure. Through a series of related electrochemical characterization results show that obtained by ion exchange method and more Component composites can effectively improve the properties of materials. In this part, it is proved that the structure design and the ion replacement method can be used to enhance the electrochemical performance of electrode materials.
【學(xué)位授予單位】:中原工學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TB33;O646
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前6條
1 孫艷霞;周園;申月;張麗娟;;動(dòng)力型鋰離子電池富鋰三元正極材料研究進(jìn)展[J];化學(xué)通報(bào);2017年01期
2 李雪芹;常琳;趙慎龍;郝昌龍;陸晨光;朱以華;唐智勇;;基于碳材料的超級(jí)電容器電極材料的研究[J];物理化學(xué)學(xué)報(bào);2017年01期
3 方永進(jìn);陳重學(xué);艾新平;楊漢西;曹余良;;鈉離子電池正極材料研究進(jìn)展[J];物理化學(xué)學(xué)報(bào);2017年01期
4 梁晰童;潘偉;陳昆峰;薛冬峰;;新型超級(jí)電容器的研發(fā)進(jìn)展[J];應(yīng)用化學(xué);2016年08期
5 張熊;孫現(xiàn)眾;馬衍偉;;高比能超級(jí)電容器的研究進(jìn)展[J];中國(guó)科學(xué):化學(xué);2014年07期
6 侯明;衣寶廉;;燃料電池技術(shù)發(fā)展現(xiàn)狀與展望[J];電化學(xué);2012年01期
,本文編號(hào):1384172
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1384172.html
最近更新
教材專(zhuān)著