微纖維玻璃棉漿料性能及其成紙導(dǎo)熱性能的研究
本文關(guān)鍵詞:微纖維玻璃棉漿料性能及其成紙導(dǎo)熱性能的研究 出處:《陜西科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 微纖維玻璃棉 漿料 Zeta電位 導(dǎo)熱系數(shù)
【摘要】:霧霾天氣的增多,使得人們更加關(guān)注空氣質(zhì)量問題,國(guó)家也出臺(tái)相關(guān)政策來改善空氣質(zhì)量。尤其是政府推出一系列清潔能源計(jì)劃,為液化天然氣的發(fā)展帶來了機(jī)遇,推動(dòng)了LNG(液化天然氣)產(chǎn)業(yè)的發(fā)展。隔熱層使用的微纖維玻璃棉絕熱材料對(duì)氣罐隔熱性起著關(guān)鍵作用。運(yùn)輸LNG時(shí),需要大量的LNG氣罐,這種氣罐采用的隔熱方式是:高真空多層絕熱。本論文首先通過實(shí)驗(yàn)分析討論微纖維玻璃棉漿料的性能,得出以下結(jié)論,隨著疏解轉(zhuǎn)數(shù)的提高,五種微纖維玻璃棉均表現(xiàn)出打漿度先上升,到達(dá)某一個(gè)特定的疏解轉(zhuǎn)數(shù)后,打漿度略微有減小,最后會(huì)趨于穩(wěn)定在某個(gè)特定的值。纖維漿料的濾水時(shí)間也會(huì)增加,當(dāng)疏解轉(zhuǎn)數(shù)到達(dá)一定值時(shí),濾水時(shí)間有所降低。隨著轉(zhuǎn)數(shù)的增大,材料的透氣度減小,疏解轉(zhuǎn)數(shù)超過10000r之后,透氣度會(huì)大幅度的升高,之后,透氣度出現(xiàn)回落。隨著疏解轉(zhuǎn)數(shù)的增加,五種微纖維玻璃棉復(fù)合絕熱材料被拉斷所需要的拉力逐步提高,當(dāng)對(duì)應(yīng)轉(zhuǎn)數(shù)到達(dá)(9000r、12000r、9000r、15000r、12000r)時(shí),材料被拉斷所需的拉力明顯開始下降,隨著疏解轉(zhuǎn)數(shù)的進(jìn)一步增加,材料被拉斷所需的拉力維持不變。緊接著研究了影響漿料體系的Zeta電位的因素,同時(shí)對(duì)其相關(guān)機(jī)理進(jìn)行研究,分析得出:微纖維玻璃棉漿料濃度越低,漿料體系中纖維的沉降速度越慢,相同時(shí)間內(nèi)的體積沉降分?jǐn)?shù)越高,纖維沉積的部分結(jié)構(gòu)越疏松,漿料的分散性能越好。機(jī)械法通過減小纖維的長(zhǎng)度從而改善微纖維玻璃棉漿料的分散性能,且隨著剪切速率的增加,Zeta電位的絕對(duì)值先增大而后減小,漿料分散狀態(tài)先變好而后變差。pH通過改變纖維之間的靜電排斥力來影響微纖維玻璃棉漿料的分散性,隨著漿料pH值的減小,漿料的分散性表現(xiàn)為先變好后變差的趨勢(shì),在pH=2.5時(shí),漿料的分散性達(dá)到最佳。SHMP、PEO、HEC的使用,可以對(duì)微纖維玻璃棉漿料體系的分散性有所改善。隨著添加量的增大,分散效果均呈現(xiàn)先變好后變差的趨勢(shì)。在各自的最佳添加量下,SHMP分散效果最佳,PEO次之,HEC最差,SHMP為最佳分散劑。最后研究了低溫隔熱紙的相關(guān)導(dǎo)熱性能。結(jié)果表明:測(cè)定導(dǎo)熱系數(shù)前,需要對(duì)微纖維玻璃棉絕熱復(fù)合材料進(jìn)行干燥處理,最佳的干燥時(shí)間為60min,干燥溫度控制在105℃。低溫下,29°SR玻棉纖維制備的絕熱材料導(dǎo)熱性能最佳,39°SR玻棉纖維制備的材料導(dǎo)熱性最小。隨著溫度的提高,不同打漿度的微纖維玻璃棉絕熱材料的導(dǎo)熱系數(shù)都會(huì)上升,其中29°SR和39°SR玻棉纖維絕熱材料的導(dǎo)熱系數(shù)隨著溫度變化不大。其他四種打漿度的玻璃棉纖維絕熱材料導(dǎo)熱性呈現(xiàn)明顯變化,由此可以看出,39°SR玻棉理論上為最合適的絕熱材料制備原料,合理的疏解轉(zhuǎn)數(shù)為12000r。通過對(duì)微纖維玻璃棉絕熱復(fù)合材料X-射線衍射圖案的分析,可以看出微纖維玻璃棉顯示出玻璃棉纖維降解較少的無定形狀態(tài),在最終材料成型當(dāng)中具有一定的骨架支持能力。
[Abstract]:Increase in haze weather, makes people pay more attention to air quality problems, also to improve the quality of the air introduction of relevant policies. Especially the government launched a series of clean energy plan, has brought opportunities for the development of liquefied natural gas, to promote the LNG (liquefied natural gas) industry development. The insulation layer using micro fiber glass wool insulation the material plays a key role in tank insulation. Transport LNG, requires a lot of LNG tank, the tank insulation is adopted: high vacuum multilayer insulation. In this dissertation, through experimental analysis of micro fiber glass cotton pulp, draw the following conclusions, with the ease of speed increased, five kinds of micro fiber glass wool showed first increased beating degree, reach a certain specific ease after the revolution, the beating degree is slightly reduced, finally will be stable in a certain value. The drainage time fiber will Increase, when the ease speed reaches a certain value, the drainage time decreased. With the increase of speed, the permeability of the material decreases, then ease speed more than 10000r, the permeability increases greatly after permeability fall. With increasing ease of speed, five kinds of micro glass fiber composite insulation material is pull off the required tension gradually increased, when the corresponding rotation reaches (9000r, 12000r, 9000r, 15000r, 12000r), material pulled off the needed tension obviously began to decline, with further increasing the ease of speed, the material is pulled off the required tension unchanged. Then study the influence factors of Zeta potential of pulp system the analysis and Research on the related mechanism, micro glass fiber slurry concentration is low, the fiber in slurry system settling speed is slower, the same time the volume of settlement and the higher the score, fiber deposition Part structure is loose, the better dispersion performance of the pulp. By reducing the length of fiber dispersion to improve the performance of micro glass fiber slurry by mechanical method, and with the increase of the shear rate, the absolute value of Zeta potential is increased firstly and then decreased, the slurry dispersion state becomes better and worse.PH by changing the electrostatic repulsive force between the fiber to influence the dispersion of micro glass fiber slurry, with the decrease of pH value of the slurry, the dispersion performance of slurry was changed for the better after the variation trend in pH=2.5, to achieve the best dispersion of.SHMP, size PEO, that the use of HEC can improve the dispersion of micro glass fiber slurry system. With the increases, the dispersion effect showed better then worse trend. The optimum amount of each of the SHMP, the best dispersant, PEO, HEC is the worst, SHMP is the best dispersant. The study on low temperature The related thermal conductivity of insulation paper. The results show that the determination of thermal conductivity, the need for drying treatment on micro fiber glass wool insulation composite material, optimal drying time is 60min, drying at 105 deg.c. Low temperature of 29 DEG SR glass fiber cotton thermal conductivity of insulation material prepared by the best, 39 ~ SR. Cotton fibers were prepared by the minimum material thermal conductivity. With the increase of temperature, the different beating degree of micro fiber glass wool insulation material thermal conductivity will increase, the thermal conductivity of 29 DEG SR and 39 DEG SR glass cotton fiber insulation material with little temperature change. The other four beating degree of cotton fiber glass insulation the thermal conductivity of materials showed significant changes, thus it can be seen that 39 DEG SR glass cotton theory is the most suitable insulation material preparation material, reasonable ease the rotation is 12000r. based on micro fiber glass wool insulation composite material X- ray diffraction pattern of the It can be seen that microfiber glass cotton shows less amorphous state of glass fiber degradation, and has a certain skeleton support ability in the final material forming.
【學(xué)位授予單位】:陜西科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB34;TE972
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;微纖維保留的機(jī)理[J];上海造紙;1974年05期
2 袁宜萍;;服用微纖維種種[J];絲綢;1992年11期
3 丁權(quán);伊萬尼特公司的玻璃微纖維[J];玻璃纖維;2001年01期
4 建發(fā);防菌阻菌無機(jī)微纖維濾膜[J];建材工業(yè)信息;2003年10期
5 蒲敏功;;溶解和分解的毛角朊回收[J];皮革科技動(dòng)態(tài);1978年02期
6 李世釗;日本剝離雙組份纖維制微纖維及其織物[J];北京紡織;1988年03期
7 金智才;90年代微纖維產(chǎn)品發(fā)展展望[J];上海紡織科技;1990年04期
8 肖波;;微纖維非織造的一種方法[J];國(guó)外紡織技術(shù)(紡織分冊(cè));1991年12期
9 錢關(guān)根;;混紡微纖“Micro Bel”[J];聚酯工業(yè);1993年03期
10 M.Nishimura ,馬建興;充滿希望的微纖維[J];絲綢技術(shù);1994年02期
相關(guān)會(huì)議論文 前6條
1 劉燕;;玻璃微纖維的制備及應(yīng)用[A];絕熱材料的前景與施工[C];2002年
2 熊華倫;;太行山隧道噴射微纖維混凝土施工新技術(shù)[A];中國(guó)交通土建工程學(xué)術(shù)論文集(2006)[C];2006年
3 白鵬;閻子峰;趙修松;;水溶液中自組裝大規(guī)模合成一維氧化鋁微纖維[A];第十一屆全國(guó)青年催化學(xué)術(shù)會(huì)議論文集(上)[C];2007年
4 李秋紅;雒林林;李愛香;;離子自組裝具有電學(xué)性質(zhì)熒光微纖維[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第18分會(huì):超分子組裝與軟物質(zhì)材料[C];2014年
5 李愛華;;玻纖白細(xì)胞過濾材料[A];中國(guó)硅酸鹽學(xué)會(huì)2003年學(xué)術(shù)年會(huì)論文摘要集[C];2003年
6 鄭學(xué)晶;裴瑩;李俊偉;湯克勇;劉捷;秦樹法;;劍麻微纖維增強(qiáng)明膠復(fù)合材料[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
相關(guān)重要報(bào)紙文章 前2條
1 ;美國(guó)杜邦推出微纖維新品種[N];中國(guó)紡織報(bào);2003年
2 木子;杜邦推出超細(xì)纖維厚重織物[N];中國(guó)紡織報(bào);2003年
相關(guān)博士學(xué)位論文 前1條
1 胡敏;靜電紡多孔結(jié)構(gòu)納微纖維材料的制備及其氣敏性能研究[D];天津工業(yè)大學(xué);2017年
相關(guān)碩士學(xué)位論文 前4條
1 張帥;拉錐毛細(xì)管聚焦流芯片制作與海藻酸鈣微纖維生成及初步應(yīng)用[D];重慶大學(xué);2015年
2 鄭新苗;微纖維玻璃棉漿料分散工藝及其成紙結(jié)構(gòu)和性能的研究[D];陜西科技大學(xué);2016年
3 田耀斌;微纖維玻璃棉漿料性能及其成紙導(dǎo)熱性能的研究[D];陜西科技大學(xué);2017年
4 李杰;微纖維玻璃棉及其制備隔熱紙性能的研究[D];陜西科技大學(xué);2014年
,本文編號(hào):1379502
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1379502.html