氧化石墨烯改性石蠟相變微膠囊的制備與性能研究
本文關鍵詞:氧化石墨烯改性石蠟相變微膠囊的制備與性能研究 出處:《西南科技大學》2017年碩士論文 論文類型:學位論文
更多相關文章: 相變微膠囊 氧化石墨烯 機械性能 導熱性能 包覆性能 防滲性能
【摘要】:能源短缺問題隨著全球經(jīng)濟的高速發(fā)展日趨突出。相變材料能在其相變過程中吸收和釋放相變潛熱,從而達到存儲和釋放能量的效果,是目前緩解能源短缺問題的研究重點之一。將相變材料微膠囊化能夠解決相變材料在相變過程中出現(xiàn)的滲漏、腐蝕、相容等問題。目前,相變微膠囊(Microencapsulated phase change materials,MEPCMs)多采用聚合物為壁材,這種相變微膠囊存在導熱性能不佳,機械性能差,芯材容易滲漏,包覆率不高等缺陷。石墨烯在導熱、阻隔、強度等方面具有優(yōu)異的性能,作為制備石墨烯的前驅(qū)體,氧化石墨烯(Graphene oxide,GO)由于疏水表面帶有豐富的親水性含氧官能團,使其與聚合物有較好的相容性,并且具有兩親性能夠穩(wěn)定皮克林乳液。本論文主要內(nèi)容包括:(1)在預聚體制備過程將GO引入到密胺樹脂(Melamine-formaldehyde resin,MF)預聚體中,再通過原位聚合法制備GO改性MF壁材的MEPCMs;適量GO能夠提高MEPCMs的機械性能,但是過量GO會導致MEPCMs的機械性能下降,并使包覆性能下降明顯;添加GO能提高MEPCMs的導熱性能,當GO分散液的濃度為3.0mg/m L時,熱導率增加65.0%;(2)利用GO的兩親性,通過乳化作用將GO引入到石蠟乳滴表面,通過原位聚合法制備以石蠟為芯材,MF為壁材,GO分布在壁材及芯材界面作為額外防滲層的MEPCMs;GO的添加能夠提升MEPCMs的防滲性能,當GO分散液的濃度為0.5mg/m L時,MEPCMs的包覆率為93.89wt%,此時,滲漏率較未改性的MEPCMs降低了93.1%;(3)利用GO的兩親性乳化得到GO包覆石蠟的MEPCMs,再通過化學還原得到具有石蠟@還原氧化石墨烯核殼結(jié)構(gòu)的MEPCMs,并熱壓成具有隔離結(jié)構(gòu)的導熱定形相變材料;制備得到的石蠟@還原氧化石墨烯MEPCMs具有明顯的核殼結(jié)構(gòu);壁材含量僅為0.34wt%;測試得到MEPCMs及導熱定形相變材料的熱導率分別由石蠟的0.125W/(m·K)提高到0.351和0.418W/(m·K)。
[Abstract]:With the rapid development of the global economy, the problem of energy shortage is becoming more and more prominent. Phase change materials can absorb and release latent heat of phase change in the process of phase transition, so as to achieve the effect of energy storage and release. The microencapsulation of phase change materials can solve the leakage, corrosion, compatibility of phase change materials in the process of phase change. At present, the microencapsulation of phase change materials can solve the problems of leakage, corrosion, compatibility and so on. Phase change microencapsulated phase change MEPCMswere mostly made of polymer. The phase change microcapsules have some defects such as poor thermal conductivity, poor mechanical properties, easy leakage of core materials and low coating rate. Graphene has excellent thermal conductivity, barrier and strength. As the precursor of graphene oxide, graphene oxide has good compatibility with polymer due to its abundant hydrophilic oxygen-containing functional groups on the hydrophobic surface. And the amphiphilic property can stabilize the Pickering emulsion. The main contents of this thesis include: 1) introducing go into the melamine resin during the preparation of prepolymer. Melamine-formaldehyde resin. The MEPCMsof MF wall materials modified by go were prepared by in-situ polymerization in the prepolymer. Go can improve the mechanical properties of MEPCMs, but excessive go can lead to the decrease of mechanical properties of MEPCMs and the obvious decrease of coating performance. The thermal conductivity of MEPCMs was improved by adding go. When the concentration of go dispersion was 3.0 mg / mL, the thermal conductivity increased 65.0%. (2) by using the amphiphilic property of go, go was introduced into the surface of paraffin wax emulsion by emulsification, and the wax as core material and MF as wall material were prepared by in-situ polymerization. Go is distributed in MEPCMsof wall material and core material interface as extra impervious layer. Go addition can improve the anti-seepage performance of MEPCMs. When the concentration of go dispersion is 0.5 mg / mL, the encapsulation rate of MEPCMs is 93.89 wts. at this time. The leakage rate was lower than that of unmodified MEPCMs. MEPCMsof go coated paraffin were obtained by amphiphilic emulsification of go, and MEPCMs with paraffin @ reductive graphene core-shell structure was obtained by chemical reduction. The heat conduction phase change material with isolation structure is formed by hot pressing. The prepared paraffin @ reductive graphene MEPCMs has obvious core-shell structure. The content of wall material is only 0.34 wt. The results show that the thermal conductivities of MEPCMs and heat-conducting phase change materials are increased from 0.125 W / m 路K of paraffin to 0.351 and 0.418 W / m 路K ~ (-1) of paraffin, respectively.
【學位授予單位】:西南科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB34
【參考文獻】
相關期刊論文 前10條
1 郭軍紅;張鵬中;慕波;邵競堯;楊保平;崔錦峰;;氧化石墨烯增強聚苯乙烯/硬脂酸丁脂微膠囊相變材料的研究[J];功能材料;2016年12期
2 喬榛;毛健;;石墨烯包覆的MUF石蠟微膠囊的制備及在紅外隱身領域的應用[J];化工新型材料;2016年12期
3 吳炳洋;鄭幗;孫玉;陳旭;;石墨烯/正十八烷微膠囊的制備與及其熱性能研究[J];高分子學報;2016年02期
4 Zhan-hua Huang;Xin Yu;Wei Li;Shou-xin Liu;;Preparation of urea-formaldehyde paraffin microcapsules modified by carboxymethyl cellulose as a potential phase change material[J];Journal of Forestry Research;2015年01期
5 陳中華;王建川;余飛;張正國;高學農(nóng);;氧化石墨烯/密胺樹脂復合材料的制備及其熱性能研究[J];功能材料;2015年01期
6 崔錦峰;崔卓;周應萍;郭軍紅;楊保平;;微膠囊相變材料研究進展[J];中國涂料;2013年09期
7 李松梅;王博;劉建華;于美;安軍偉;;不同形貌鎳納米粒子-石墨烯復合材料的制備及微波吸收性能[J];物理化學學報;2012年11期
8 肖力光;馮鑠;;相變材料在建筑節(jié)能及其它領域的研究與應用[J];吉林建筑工程學院學報;2012年02期
9 毛雷;劉華;王曙東;;相變微膠囊整理棉織物的結(jié)構(gòu)與性能[J];紡織學報;2011年10期
10 曹虹霞;李和玉;張健飛;;相變材料微膠囊的制備及應用[J];天津工業(yè)大學學報;2011年01期
相關碩士學位論文 前2條
1 馬永強;微膠囊相變材料的制備及其在熱紅外隱身中的應用[D];蘭州理工大學;2012年
2 閆麗佳;相變材料微膠囊的制備及其應用[D];北京服裝學院;2010年
,本文編號:1374501
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1374501.html