含微孔洞脆性材料的沖擊響應(yīng)特性與介觀演化機(jī)制
本文關(guān)鍵詞:含微孔洞脆性材料的沖擊響應(yīng)特性與介觀演化機(jī)制,由筆耕文化傳播整理發(fā)布。
摘要
微孔洞顯著地影響著脆性材料的沖擊響應(yīng), 理解其介觀演化機(jī)制和宏觀響應(yīng)規(guī)律將使微孔洞有利于而無(wú)害于脆性材料的工程應(yīng)用. 通過(guò)建立能夠準(zhǔn)確表現(xiàn)材料彈性性質(zhì)和斷裂演化的格點(diǎn)-彈簧模型, 本文揭示了孔洞的演化對(duì)于脆性材料的影響. 沖擊下孔洞導(dǎo)致的塌縮變形和從孔洞發(fā)射的剪切裂紋所導(dǎo)致的滑移變形產(chǎn)生了顯著的應(yīng)力松弛, 并調(diào)制了沖擊波的傳播. 在多孔脆性材料中, 沖擊波逐漸展寬為彈性波和變形波. 變形波在宏觀上類(lèi)似于延性金屬材料的塑性波, 在介觀上對(duì)應(yīng)于塌縮變形和滑移變形過(guò)程. 樣品中的氣孔率決定了脆性材料的彈性極限, 氣孔率和沖擊應(yīng)力共同影響著變形波的傳播速度和沖擊終態(tài)的應(yīng)力幅值. 含微孔洞脆性材料在沖擊波復(fù)雜加載實(shí)驗(yàn)、功能材料失效的預(yù)防、建筑物防護(hù)等方面具有潛在的應(yīng)用價(jià)值. 本文獲得的沖擊響應(yīng)規(guī)律有助于針對(duì)特定應(yīng)用優(yōu)化設(shè)計(jì)脆性材料的沖擊響應(yīng)和動(dòng)態(tài)力學(xué)性能.
AbstractMicro-voids significantly affect shock responses of brittle materials. Knowledge about the meso-scale evolution mechanism and macro-scale shock behavior will help to utilize micro-void in applications and avoid its disadvantages. A lattice-spring model, which can represent both elastic property and fracture evolution accurately, is built in this work. Simulations reveal that severe stress relaxation, which is contributed from collapse deformation induced by voids and slippage deformation induced by shear cracks extending from voids, modulates the propagation of shock wave. In a porous brittle material, the shock wave broadens into an elastic wave and a deformation wave. On a macro-scale, the deformation wave behaves as a plastic wave in ductile metal; on a meso-scale, it corresponds to the processes of collapse and slippage deformations. It is found that porosity of the sample determines the Hugoniot elastic limit of material; whereas the porosity and shock stress affect the propagation speed of the deformation wave and stress amplitude in a final state of shock. Brittle materials containing micro-voids have potential applications in complex shock loading experiments, precaution of shock induced function failure, and crashworthiness of buildings. Shock behaviors reported in this work will benefit the design and optimization of shock responses and dynamic mechanical properties of brittle materials used in specific applications.
收稿日期:2014-04-17
基金資助中國(guó)工程物理研究院重點(diǎn)實(shí)驗(yàn)室專(zhuān)項(xiàng)科研計(jì)劃(批準(zhǔn)號(hào): 2012-專(zhuān)-03)、沖擊波物理與爆轟物理重點(diǎn)實(shí)驗(yàn)室基金(批準(zhǔn)號(hào): 9140C670301120C67248)和國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 11272164)資助的課題.
Project supported by the National Key Laboratory of Shock Wave and Detonation Physics of China Academy of Engineering Physics (Grant No. 2012-zhuan-03), the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant No. 9140C670301120C67248), and the National Natural Science Foundation of China (Grant No. 11272164).
引用本文[中文] 喻寅, 賀紅亮, 王文強(qiáng), 盧鐵城. 含微孔洞脆性材料的沖擊響應(yīng)特性與介觀演化機(jī)制[J]. 物理學(xué)報(bào), 2014, 63(24): 246102. [英文] Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng. Shock response and evolution mechanism of brittle material containing micro-voids[J]. Acta Phys. Sin., 2014, 63(24): 246102.
使用本文
PDF | 加入我的文獻(xiàn)中心
PACS
[1] Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907 [2] Sarac B, Schroers J 2013 Nat. Commun. 4 2158 [3] Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365 [4] Herring S D, Germann T C, Grönbech-Jensen N 2010 Phys. Rev. B 82 214108 [5] Mang J T, Hjelm R P, Francois E G 2010 Propellants Explos. Pyrotech. 35 7 [6] Swantek A B, Austin J M 2010 J. Fluid Mech. 649 399 [7] Vandersall K S, Tarver C M, Garcia F, Chidester S K 2010 J. Appl. Phys. 107 094906 [8] Zhang F, He H, Liu G, Liu Y, Yu Y, Wang Y 2013 J. Appl. Phys. 113 183501 [9] Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025 [10] Setchell R E 2005 J. Appl. Phys. 97 013507 [11] Jiang D, Du J, Gu Y, Feng Y 2012 J. Appl. Phys. 111 104102 [12] Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [張福平, 杜金梅, 劉雨生, 劉藝, 劉高旻, 賀紅亮 2011 物理學(xué)報(bào) 60 057701] [13] Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201 (in Chinese) [彭輝, 李平, 裴曉陽(yáng), 賀紅亮, 程和平, 祁美蘭 2013 物理學(xué)報(bào) 62 226201] [14] Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101 [15] Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202 [16] Gray III G T 2012 Shock Compression of Condensed Matter-2011 Chicago, USA, June 26-July 1, 2011 p19 [17] Tan P J, Reid S R, Harrigan J J, Zou Z, Li S 2005 J. Mech. Phys. Solids 53 2206 [18] Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188 [19] Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302 [20] Cui X L, Zhu W J, He H L, Deng X L, Li Y J 2008 Phys. Rev. B 78 024115 [21] Bringa E M, Rosolankova K, Rudd R E, Remington B A, Wark J S, Duchaineau M, Kalantar D H, Hawrellak J, Belak J 2006 Nat. Mater. 5 805 [22] Shehadeh M A, Bringa E M, Zbib H M, McNaney J M, Remington B A 2006 Appl. Phys. Lett. 89 171918 [23] Dávila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S 2005 Appl. Phys. Lett. 86 161902 [24] Buxton G A, Care C M, Cleaver D J 2001 Modelling Simul Mater. Sci. Eng. 9 485 [25] Zhao G, Fang J, Zhao J 2011 Int. J. Numer. Anal. Meth. Geomech. 35 859 [26] Ostoja-Starzewski M 2002 Appl. Mech. Rev. 55 35 [27] Wang Y, Yin X C, Ke F J, Xia M F, Peng K Y 2000 Pure Appl. Geophys. 157 1905 [28] Yano K, Horie Y 1999 Phys. Rev. B 59 13672 [29] Grah M, Alzebdeh K, Sheng P Y, Vaudin M D, Bowman K J, Ostoja-Starzewski M 1996 Acta Mater. 44 4003 [30] Gusev A A 2004 Phys. Rev. Lett. 93 034302 [31] Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103 (in Chinese) [喻寅, 王文強(qiáng), 楊佳, 張友君, 蔣冬冬, 賀紅亮 2012 物理學(xué)報(bào) 61 048103] [32] Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solids (Beijing: Higher Education Press) pp4, 5 (in Chinese) [羅恩 B 著 (龔江宏 譯) 2010 脆性固體斷裂力學(xué) (北京: 高等教育出版社) 第4, 5頁(yè)] [33] Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309 [34] Grady D E 1998 Mech. Mater. 29 181 [35] Setchell R E 2007 J. Appl. Phys. 101 053525 [36] Setchell R E 2003 J. Appl. Phys. 94 573
數(shù)據(jù)正在加載中...
本文關(guān)鍵詞:含微孔洞脆性材料的沖擊響應(yīng)特性與介觀演化機(jī)制,由筆耕文化傳播整理發(fā)布。
,本文編號(hào):132949
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/132949.html