基于本體論的鐵路風(fēng)險(xiǎn)關(guān)聯(lián)知識(shí)發(fā)現(xiàn)研究
[Abstract]:In the traditional research of early-warning and pre-control of heavy haul railway transportation risk, the linear causal relationship between risk and accident is often emphasized. However, in reality, the mechanism of accident cause is the interaction, aggregation and upgrading of the complex situation. In order to effectively reduce the frequency of accidents and pre-control the risk sources, it is necessary to study the correlation characteristics and patterns between the risk sources. According to the accident characteristics of heavy haul railway, combining text mining and data mining, this paper studies the risk source association characteristics based on ontology knowledge discovery and knowledge reasoning method, which provides accurate judgment for pre-control of risk source. The main contents of this paper are as follows: (1) the construction of railway risk ontology: based on the accident reports over the years, describe the accident situation and accident cause mechanism, analyze the various types (environment, equipment) under different accident situations, The causative mechanism of risk sources is aimed at the reuse of knowledge such as accident and risk sources, Constructing the initial heavy haul railway risk ontology model. (2) Railway risk analysis: aiming at the risk hidden trouble database (semi-structural data and text data) of heavy haul railway, the key words of risk source in semi-structured data are extracted by text analysis. Extract the risk factors that may affect the accident and verify the impact of the risk factors on the accident. The verified risk factors are added to the heavy haul railway risk ontology. (3) data mining based on hidden danger database: according to the characteristics of lag in railway accident upgrading, On the basis of the traditional Apriori association rules algorithm, the ability of timing analysis is added, and the improved algorithm is used to mine and analyze the hidden risk data of a domestic heavy-haul railway company, and to mine the association patterns between risk factors. To further analyze the underlying cause mechanism of railway accidents, Expand and adjust the heavy-haul railway risk ontology model based on accident analysis. (4) Railway risk ontology generation: a semi-automatic ontology construction method for heavy-haul railway domain ontology for heavy haul railway risk data is proposed. The semi-automatic construction method ensures the efficiency of ontology knowledge reasoning, the reliability of ontology construction and the accuracy and professionalism of domain knowledge. It provides a feasible method for ontology learning based on structured and semi-structured data sources. (5) Railway risk ontology learning: based on risk correlation knowledge, the heavy haul railway risk ontology knowledge reasoning is studied. An ontology based modeling method for heavy haul railway knowledge is proposed. The proposed reasoning mechanism of railway risk association knowledge promotes the application of heavy-haul railway risk knowledge, and realizes the accuracy of early warning of accidents and the effectiveness of in-process handling. At the same time, it also accomplishes the sharing and reuse of railway risk knowledge. To realize the rapid acquisition and maintenance of railway risk related knowledge.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U298;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐增林;盛泳潘;賀麗榮;王雅芳;;知識(shí)圖譜技術(shù)綜述[J];電子科技大學(xué)學(xué)報(bào);2016年04期
2 王鋒;李芳頌;高曉峰;衛(wèi)椺;;大數(shù)據(jù)知識(shí)服務(wù)平臺(tái)構(gòu)建關(guān)鍵技術(shù)研究[J];通訊世界;2016年14期
3 左麗華;;詞頻分析及常用工具比較研究[J];圖書館學(xué)刊;2016年06期
4 王向前;張寶隆;李慧宗;;本體研究綜述[J];情報(bào)雜志;2016年06期
5 劉嶠;李楊;段宏;劉瑤;秦志光;;知識(shí)圖譜構(gòu)建技術(shù)綜述[J];計(jì)算機(jī)研究與發(fā)展;2016年03期
6 崔妍;包志強(qiáng);;關(guān)聯(lián)規(guī)則挖掘綜述[J];計(jì)算機(jī)應(yīng)用研究;2016年02期
7 陳平華;陳傳瑜;洪英漢;;一種結(jié)合關(guān)聯(lián)規(guī)則的協(xié)同過(guò)濾推薦算法[J];小型微型計(jì)算機(jī)系統(tǒng);2016年02期
8 蔡炳萬(wàn);石宇強(qiáng);李明輝;張敏;;基于本體的貝葉斯網(wǎng)絡(luò)知識(shí)推理研究[J];機(jī)械設(shè)計(jì)與制造;2016年01期
9 楊丁穎;黃健陵;;鐵路工程項(xiàng)目風(fēng)險(xiǎn)管理體系的構(gòu)建與運(yùn)行[J];鐵道科學(xué)與工程學(xué)報(bào);2015年06期
10 季華安;;淺析鐵路工務(wù)系統(tǒng)風(fēng)險(xiǎn)管理存在的問(wèn)題及對(duì)策[J];鐵路工程造價(jià)管理;2015年06期
相關(guān)博士學(xué)位論文 前2條
1 唐守利;基于本體的云服務(wù)語(yǔ)義檢索模型研究[D];吉林大學(xué);2016年
2 魏圓圓;基于本體論的農(nóng)業(yè)知識(shí)建模及推理研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 劉鑫峰;基于Web數(shù)據(jù)挖掘的個(gè)性化推薦系統(tǒng)研究[D];長(zhǎng)春工業(yè)大學(xué);2016年
2 李自勝;基于動(dòng)態(tài)KMV模型和時(shí)序關(guān)聯(lián)規(guī)則的商業(yè)銀行信用風(fēng)險(xiǎn)研究[D];浙江財(cái)經(jīng)大學(xué);2016年
3 張磊;基于鐵路安全風(fēng)險(xiǎn)管理理論的班組激勵(lì)機(jī)制研究[D];西南交通大學(xué);2015年
4 和有元;大型煤制天然氣項(xiàng)目風(fēng)險(xiǎn)管理研究[D];中國(guó)科學(xué)院大學(xué)(工程管理與信息技術(shù)學(xué)院);2015年
5 張萬(wàn)鵬;鐵路風(fēng)險(xiǎn)管理方法及信息處置平臺(tái)研究[D];中國(guó)鐵道科學(xué)研究院;2014年
6 于辰成;基于BP神經(jīng)網(wǎng)絡(luò)的高速鐵路風(fēng)險(xiǎn)評(píng)價(jià)模型研究[D];西南交通大學(xué);2014年
7 康東;中文文本挖掘基本理論與應(yīng)用[D];蘇州大學(xué);2014年
8 王漪;文本挖掘技術(shù)的研究及其在教學(xué)平臺(tái)中的應(yīng)用[D];北京交通大學(xué);2014年
9 吳彥偉;智能查詢中的本體推理機(jī)制及其應(yīng)用研究[D];西安電子科技大學(xué);2014年
10 趙雁峰;鐵路貨運(yùn)安全風(fēng)險(xiǎn)管理研究[D];西南交通大學(xué);2013年
,本文編號(hào):2416614
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2416614.html