基于因子分析及卡爾曼濾波的瓦斯涌出量預(yù)測(cè)研究
[Abstract]:Mine gas disaster threatens coal mine safety production. It is the foundation of studying mine gas emission law and gas geology law to grasp the prediction method of gas emission quantity and to realize accurate prediction of mine gas emission quantity. It is of great significance to the prevention and control of mine gas disaster and the life support of underground personnel. In this paper, a gas mine of Yankuang Group is taken as the experimental research object. From the two aspects of mine geological conditions and mining conditions, the interaction between gas emission and its influencing factors is studied. To explore the influence factors of gas emission quantity has many factors, the action degree is not the same; There is a complex nonlinear relationship between gas emission and the change of working face propulsion with time. In view of the fact that there are many factors affecting the quantity of gas emission and the degree of action is different, a method based on factor analysis is put forward to select the prediction index of gas emission quantity. By extracting the effective same common factors from the original variables, the information overlap between the original variables is reduced, the dimension reduction of the original variables is realized, and the prediction index of the gas emission quantity is obtained. Aiming at the nonlinearity between gas emission prediction index and gas emission and its own time-varying characteristics, a gas emission prediction model coupled with BP neural network and Kalman filter is constructed. The BP neural network not only realizes the nonlinear mapping identification of gas emission prediction index, but also provides the state variable for the recursive equations of Kalman filter theory. When the prediction index changes with the advance of the working face, the BP neural network can effectively identify the change of the index information to the state variables of Kalman filter, and realize the dynamic prediction of gas emission. The application of factor analysis, BP neural network Kalman filter and so on in the prediction of mine gas emission is studied. The MATLAB software is used as the development platform, and the graphical user interface (GUI) is used as the software development tool. The software of gas emission prediction based on factor analysis and Kalman filter is designed and developed. The software effectively integrates the module of selecting prediction index by factor analysis method and the prediction model of coupling BP neural network and Kalman filter. The application examples show that the software has the characteristics of convenient operation, friendly interface and high prediction precision, and it can meet the actual requirements of the prediction of mine gas emission.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TD712.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙云平;施龍青;高衛(wèi)富;王穎;劉玉;;我國(guó)煤礦轉(zhuǎn)型發(fā)展期內(nèi)煤礦事故統(tǒng)計(jì)分析[J];煤炭技術(shù);2016年09期
2 袁亮;;我國(guó)深部煤與瓦斯共采戰(zhàn)略思考[J];煤炭學(xué)報(bào);2016年01期
3 王艷雙;;礦井瓦斯涌出量預(yù)測(cè)研究中的數(shù)學(xué)模型[J];煤炭技術(shù);2015年11期
4 趙可可;;基于小波神經(jīng)網(wǎng)絡(luò)的瓦斯涌出量預(yù)測(cè)[J];煤炭與化工;2015年10期
5 劉彥偉;薛文濤;李志強(qiáng);;礦山統(tǒng)計(jì)法瓦斯涌出量預(yù)測(cè)模型存在的問(wèn)題與校正[J];煤礦安全;2015年05期
6 徐青云;趙耀江;李永明;;我國(guó)煤礦事故統(tǒng)計(jì)分析及今后預(yù)防措施[J];煤炭工程;2015年03期
7 徐青偉;王兆豐;;瓦斯涌出量預(yù)測(cè)的GM(1,1)模型改進(jìn)[J];煤炭技術(shù);2015年01期
8 張春璞;;分源預(yù)測(cè)法在生產(chǎn)礦井瓦斯涌出量預(yù)測(cè)中的應(yīng)用[J];煤炭技術(shù);2014年10期
9 潘永福;;分源預(yù)測(cè)法參數(shù)確定及應(yīng)用研究[J];中州煤炭;2014年04期
10 賈花萍;;灰色Elman神經(jīng)網(wǎng)絡(luò)的礦井瓦斯涌出量預(yù)測(cè)[J];計(jì)算機(jī)技術(shù)與發(fā)展;2014年06期
相關(guān)會(huì)議論文 前1條
1 張智明;;重慶南桐礦業(yè)公司魚(yú)田堡煤礦瓦斯地質(zhì)統(tǒng)計(jì)法預(yù)測(cè)預(yù)報(bào)區(qū)域性煤與瓦斯突出[A];2006年全國(guó)瓦斯地質(zhì)學(xué)術(shù)年會(huì)論文集[C];2006年
相關(guān)博士學(xué)位論文 前4條
1 陳祖云;煤與瓦斯突出前兆的非線性預(yù)測(cè)及支持向量機(jī)識(shí)別研究[D];中國(guó)礦業(yè)大學(xué);2009年
2 謝乃明;灰色系統(tǒng)建模技術(shù)研究[D];南京航空航天大學(xué);2008年
3 趙志剛;煤與瓦斯突出的耦合災(zāi)變機(jī)制及非線性分析[D];山東科技大學(xué);2007年
4 高雷阜;煤與瓦斯突出的混沌動(dòng)力系統(tǒng)演化規(guī)律研究[D];遼寧工程技術(shù)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 秦燃;基于主成分分析的BP神經(jīng)網(wǎng)絡(luò)礦井瓦斯涌出量預(yù)測(cè)研究[D];北京交通大學(xué);2015年
2 呂坤坤;基于二階灰色神經(jīng)網(wǎng)絡(luò)的工作面瓦斯涌出量預(yù)測(cè)[D];安徽理工大學(xué);2015年
3 劉晟;綜采工作面瓦斯涌出預(yù)測(cè)及其突出危險(xiǎn)性的研究[D];太原理工大學(xué);2013年
4 劉曉國(guó);江西萍鄉(xiāng)巨源煤礦瓦斯地質(zhì)特征研究[D];安徽理工大學(xué);2012年
5 秦勇;基于灰色神經(jīng)網(wǎng)絡(luò)的煤礦瓦斯涌出量預(yù)測(cè)模型研究[D];太原科技大學(xué);2011年
6 劉建雄;礦井采煤工作面瓦斯涌出規(guī)律研究[D];西安科技大學(xué);2011年
7 白宇;基于差值灰色徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的瓦斯涌出量預(yù)測(cè)[D];太原理工大學(xué);2011年
8 姚念崗;運(yùn)裕礦井瓦斯地質(zhì)規(guī)律與瓦斯預(yù)測(cè)[D];河南理工大學(xué);2011年
9 高倩;基于模糊理論的譜聚類(lèi)算法研究與應(yīng)用[D];江南大學(xué);2009年
10 徐進(jìn)華;基于灰色系統(tǒng)理論的數(shù)據(jù)挖掘及其模型研究[D];北京交通大學(xué);2009年
,本文編號(hào):2400835
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2400835.html