煤礦外因火災(zāi)早期探測(cè)方法研究
發(fā)布時(shí)間:2018-11-26 11:22
【摘要】:針對(duì)煤礦井下環(huán)境特點(diǎn),提出了基于數(shù)字圖像處理和支持向量機(jī)的煤礦外因火災(zāi)早期探測(cè)方法。該方法根據(jù)火災(zāi)初期的變化特征,用圖像處理方法提取溫度變化率、面積增長(zhǎng)率、火焰閃爍頻率和整體穩(wěn)定性等特征值,并將其作為輸入信號(hào),利用支持向量機(jī)進(jìn)行數(shù)據(jù)融合后實(shí)現(xiàn)火災(zāi)探測(cè)。實(shí)驗(yàn)結(jié)果表明,該方法能夠?qū)γ旱V井下高;鹪春透蓴_信號(hào)進(jìn)行分類識(shí)別,具有探測(cè)率高、誤判率低、實(shí)時(shí)性好、魯棒性強(qiáng)的特點(diǎn)。
[Abstract]:According to the characteristics of underground coal mine environment, this paper presents an early detection method of coal mine external fire based on digital image processing and support vector machine. According to the characteristics of the initial fire, the image processing method is used to extract the characteristic values of temperature change rate, area growth rate, flame flicker frequency and overall stability, and take them as input signals. Support vector machine (SVM) is used to realize fire detection after data fusion. The experimental results show that this method can be used to classify and identify high risk fire sources and interference signals in coal mines, and has the characteristics of high detection rate, low error rate, good real-time performance and strong robustness.
【作者單位】: 西安科技大學(xué)電氣與控制工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(51277149) 陜西省教育廳專項(xiàng)項(xiàng)目(14JK1467) 西安科技大學(xué)博士啟動(dòng)基金項(xiàng)目(2014QDJ010)
【分類號(hào)】:TD752.3
,
本文編號(hào):2358418
[Abstract]:According to the characteristics of underground coal mine environment, this paper presents an early detection method of coal mine external fire based on digital image processing and support vector machine. According to the characteristics of the initial fire, the image processing method is used to extract the characteristic values of temperature change rate, area growth rate, flame flicker frequency and overall stability, and take them as input signals. Support vector machine (SVM) is used to realize fire detection after data fusion. The experimental results show that this method can be used to classify and identify high risk fire sources and interference signals in coal mines, and has the characteristics of high detection rate, low error rate, good real-time performance and strong robustness.
【作者單位】: 西安科技大學(xué)電氣與控制工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(51277149) 陜西省教育廳專項(xiàng)項(xiàng)目(14JK1467) 西安科技大學(xué)博士啟動(dòng)基金項(xiàng)目(2014QDJ010)
【分類號(hào)】:TD752.3
,
本文編號(hào):2358418
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2358418.html
最近更新
教材專著