基于ASAR數(shù)據(jù)的海面溢油信息提取
[Abstract]:Because of the complexity of marine environment, the oil spill accidents occur soon after weathering, diffusion, if not timely monitoring, emergency measures, its impact on the marine environment and resources will be very serious. Spaceborne synthetic Aperture Radar (Synthetic Aperture Radar, SAR) is used to detect oil spills, which is mainly based on the difference of the backscattering intensity of sea surface to microwave wave band. It has the characteristics of small weather influence, high detection precision and wide coverage, which can ensure the accurate identification of oil spill targets on the sea surface. At present, the main problems in the research of Spaceborne synthetic Aperture Radar (SAR) monitoring oil spill are as follows: first, the effect of oil spill "false target" greatly reduces the recognition accuracy of oil spill target; second, the spatial information analysis of oil spill target is insufficient. Lack of spatial similarity to consider oil spill target recognition. In this paper, the method of extracting oil spill information from sea surface combines expert knowledge with object oriented classification method, which solves the problem of "false target", and takes texture feature as the input of classification object. The object-oriented classification method is used to further excavate the two-dimensional spatial features of oil spill targets. The innovation of this study lies in: according to the causes, characteristics and development trend of the "false target" in the spaceborne SAR sea surface oil spill image, the classification rules of "false target" are established, and the "false target" is classified by using the classification rule. Combined with the image feature of the oil spill and the background information of the oil spill event, it can be used as the expert knowledge base to eliminate the false target. On the other hand, in recognition of the limitations of the existing image information extraction techniques, we further consider the two-dimensional spatial features of the target by combining the "false target" recognition with the object-oriented classification method. An oil spill information extraction and monitoring scheme based on spaceborne SAR images was established, and a better target recognition effect was obtained, which is another innovation of this study. Taking the oil spill accident caused by the Lebanon War in 2006 as an example, using the ENVISAT-ASAR data, the technical methods proposed in this study were tested and applied. The results show that the expert knowledge base of "false target" can eliminate the oil spill "false target" well, and combine with the object-oriented classification method to classify the oil spill information on the surface of spaceborne SAR image, compared with the method without "false target" elimination. The efficiency and accuracy of the classification algorithm are greatly improved. Spaceborne SAR satellite, as an important tool of environmental disaster monitoring, has been paid attention to by many countries all over the world. Its development is characterized by constellation, multi-band and multi-polarization. Therefore, it can provide better data support for the oil spill information extraction and monitoring scheme proposed in this paper, and the accuracy of oil spill target recognition will be further improved.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:U698.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李宗品;中國海面溢油鑒別技術(shù)考察團(tuán)訪問美國[J];海洋環(huán)境科學(xué);1985年02期
2 蕙季;我國首次利用衛(wèi)星對“海面溢油”進(jìn)行監(jiān)視[J];交通環(huán)保;2005年01期
3 戴云從;海面溢油鑒別技術(shù)海上協(xié)同執(zhí)法實驗在青島進(jìn)行[J];海洋環(huán)境科學(xué);1989年04期
4 宮景霞;正構(gòu)烷烴氣相色譜指紋法鑒別海面溢油源[J];福建環(huán)境;2002年06期
5 陳偉琪,張珞平;正構(gòu)烷烴氣相色譜指紋法鑒別海面溢油源一事例研究[J];臺灣海峽;2002年03期
6 陳偉琪,張珞平;鑒別海面溢油的正構(gòu)烷烴氣相色譜指紋法[J];廈門大學(xué)學(xué)報(自然科學(xué)版);2002年03期
7 李宗品;海面溢油鑒別技術(shù)講習(xí)班在大連舉行[J];海洋環(huán)境科學(xué);1987年04期
8 陳慶華;楊章躍;;同方江新海洋環(huán)保船馳援大連“7.16”事故海面溢油清理[J];中國軍轉(zhuǎn)民;2010年08期
9 戴云從,李偉;海面溢油鑒別技術(shù)在查處船舶油排污方面的應(yīng)用初探[J];海洋環(huán)境科學(xué);1985年03期
10 徐恒振,李宗品;模糊最大矩陣元鑒別海面溢油[J];環(huán)境科學(xué);1992年04期
相關(guān)會議論文 前10條
1 姜良美;王芳;;基于ASAR數(shù)據(jù)的玉米作物區(qū)土壤水分反演[A];遙感定量反演算法研討會摘要集[C];2010年
2 洪順英;劉智榮;申旭輝;單新建;戴婭瓊;荊鳳;;基于升降軌ASAR的于田Ms7.3級地震同震形變場信息提取與分析[A];中國地震學(xué)會空間對地觀測專業(yè)委員會2009年學(xué)術(shù)研討會論文摘要集[C];2009年
3 汪馳升;單新建;張國宏;王長林;;基于ASAR升降軌數(shù)據(jù)解算于田M_S7.3地震3D同震形變場[A];中國地震學(xué)會空間對地觀測專業(yè)委員會成立大會暨學(xué)術(shù)研討會論文集[C];2008年
4 史曉明;凌飛龍;;ASAR影像在福州地區(qū)水稻監(jiān)測中的處理與應(yīng)用[A];第十四屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2008年
5 李秉柏;楊沈斌;申雙和;譚炳香;何維;;基于ENVISAT ASAR數(shù)據(jù)的水稻遙感監(jiān)測[A];2007年中國農(nóng)業(yè)工程學(xué)會學(xué)術(shù)年會論文摘要集[C];2007年
6 林彬;;航空激光遙感識別海面溢油數(shù)據(jù)處理算法的比較研究[A];第十四屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2003年
7 程學(xué)軍;譚德寶;汪朝輝;張穗;;基于ASAR數(shù)據(jù)的洪水淹沒范圍快速監(jiān)測研究[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國科協(xié)年會論文集(二)[C];2007年
8 俞沅;;高清晰度衛(wèi)星遙感監(jiān)視海面溢油的應(yīng)用進(jìn)展[A];中國航海學(xué)會1999年度學(xué)術(shù)交流會優(yōu)秀論文集[C];1999年
9 李秉柏;張萍萍;譚炳香;王志明;;水稻極化散射特征分析及稻田分類方法研究[A];農(nóng)業(yè)工程科技創(chuàng)新與建設(shè)現(xiàn)代農(nóng)業(yè)——2005年中國農(nóng)業(yè)工程學(xué)會學(xué)術(shù)年會論文集第一分冊[C];2005年
10 趙朝方;李曉龍;馬佑軍;齊敏s,
本文編號:2282361
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2282361.html