基于ANN的泡沫金屬阻隔爆效果預測研究
發(fā)布時間:2018-08-31 18:09
【摘要】:泡沫金屬是目前能夠同時抑制瓦斯爆炸火焰波和壓力波的新型阻隔爆材料,影響其阻隔爆效果的因素眾多,而測試實驗過程費用高,周期長。為減少實驗周期的材料損耗,優(yōu)化泡沫金屬參數(shù)組合,提高實驗效率,采用人工神經(jīng)網(wǎng)絡方法對不同參數(shù)組合的泡沫金屬阻隔效果進行了預測研究。結果表明:BP神經(jīng)網(wǎng)絡適用泡沫金屬阻隔爆效果預測。當BP網(wǎng)絡采用10個神經(jīng)元,傳遞函數(shù)選擇"logsig"、"purelin",網(wǎng)絡達到最優(yōu),預測壓力和溫度的最大衰減率平均誤差分別為13%和4%。研究表明人工神經(jīng)網(wǎng)絡可以用于泡沫金屬阻隔爆效果的預測。
[Abstract]:Foam metal is a new type of flame barrier material which can simultaneously suppress the flame wave and pressure wave of gas explosion at present. There are many factors that affect the flame wave and pressure wave of gas explosion, but the cost of test process is high and the period is long. In order to reduce the material loss in the experiment cycle, optimize the combination of foam metal parameters and improve the experimental efficiency, the artificial neural network method was used to predict the barrier effect of different parameter combinations of foam metal. The results show that the 1: BP neural network is suitable for predicting the effect of foam metal explosion barrier. When the BP network adopts 10 neurons, the transfer function selects "logsig" and "purelin", and the network reaches the optimum. The average error of the maximum attenuation rate of predicting pressure and temperature is 13% and 4%, respectively. The results show that the artificial neural network can be used to predict the effect of foam metal explosion barrier.
【作者單位】: 黑龍江科技大學安全工程學院;中國礦業(yè)大學安全工程學院;黑龍江科技大學理學院;黑龍江龍煤鶴崗礦業(yè)有限責任公司俊德煤礦;
【基金】:黑龍江省自然科學青年基金資助項目(QC2015054) 國家安全監(jiān)督管理總局2016重大事故防治關鍵技術科技項目(heilongjiang-0001-2016AQ)
【分類號】:TD712.7
本文編號:2215756
[Abstract]:Foam metal is a new type of flame barrier material which can simultaneously suppress the flame wave and pressure wave of gas explosion at present. There are many factors that affect the flame wave and pressure wave of gas explosion, but the cost of test process is high and the period is long. In order to reduce the material loss in the experiment cycle, optimize the combination of foam metal parameters and improve the experimental efficiency, the artificial neural network method was used to predict the barrier effect of different parameter combinations of foam metal. The results show that the 1: BP neural network is suitable for predicting the effect of foam metal explosion barrier. When the BP network adopts 10 neurons, the transfer function selects "logsig" and "purelin", and the network reaches the optimum. The average error of the maximum attenuation rate of predicting pressure and temperature is 13% and 4%, respectively. The results show that the artificial neural network can be used to predict the effect of foam metal explosion barrier.
【作者單位】: 黑龍江科技大學安全工程學院;中國礦業(yè)大學安全工程學院;黑龍江科技大學理學院;黑龍江龍煤鶴崗礦業(yè)有限責任公司俊德煤礦;
【基金】:黑龍江省自然科學青年基金資助項目(QC2015054) 國家安全監(jiān)督管理總局2016重大事故防治關鍵技術科技項目(heilongjiang-0001-2016AQ)
【分類號】:TD712.7
【相似文獻】
相關期刊論文 前3條
1 郭榮坤,王忠東;ANN測井相分析方法研究[J];地球物理學進展;1996年02期
2 王德潤,謝廣祥,孟祥瑞;基于ANN的綜放工作面產量與工效預測[J];遼寧工程技術大學學報;2003年06期
3 胡敬朋;楊公訓;;基于ANN的煤巖破壞電磁輻射預測研究[J];金屬礦山;2009年09期
,本文編號:2215756
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2215756.html