傾斜煤層底板突水流固耦合作用過程及數(shù)值仿真技術(shù)
[Abstract]:Under the action of fluid-solid coupling, the rock fissures in the floor mining are developed under the action of fluid-solid coupling, which eventually induces the water inrush of the bottom plate, which seriously threatens the safety of mine production. For a long time, domestic scholars have carried out a great deal of research work on the mining failure characteristics and water inrush mechanism of horizontal and near-horizontal coal seam floor, and obtained abundant theoretical results, although they have played an important role in the prediction and prevention of mine water damage. However, the study of deformation, failure and seepage characteristics of inclined seam floor is not perfect. Therefore, by using the methods of theoretical analysis, numerical simulation and field measurement, the characteristics of mining failure of inclined coal seam floor and the danger of water inrush from mine floor are systematically studied in this paper. The results are as follows: (1) based on the semi-infinite body theory and Mohr-Coulomb failure criterion, the effect of floor pressure water pressure and seam inclination on mining floor is considered. Combined with the supporting pressure distribution law of seam mining floor during longwall mining of inclined coal seam, a mechanical model for solving mining stress and failure depth of inclined coal seam floor is established, respectively. The horizontal stress, shear stress and maximum failure depth of mining floor at any point in inclined coal seam mining floor are deduced and calculated. (2) according to the orthogonal experimental design scheme, the FLAC~3D numerical simulation is carried out on the floor failure depth of inclined coal seam working face. The matrix analysis and variance analysis of simulation results are carried out, and the sensitivity of each main control factor to the depth of floor failure is determined. The optimal scheme of orthogonal simulation test is given, that is, the minimum damage depth of bottom plate is obtained after the implementation of this scheme. (3) based on the thin plate theory, a mechanical model for solving the deflection of the key layer of the inclined coal seam floor is established, and the deflection value of the key layer of the inclined coal seam floor is calculated. Combined with the Mohr Coulomb failure criterion in elastic mechanics, the criterion expression of hydraulic inrush at any point in the key layer of water barrier in inclined coal seam floor is obtained. (4) the principal component logistic regression analysis and logistic regression analysis are carried out for the main controlling factors of water inrush in the floor respectively. The results of regression analysis show that the average correct rate of principal component logistic regression is about 10% higher than that of logistic regression. Based on the principal component logistic regression analysis, the average correct rate of the regression model of floor water inrush is higher, which combines with the actual mining geological parameters. To some extent, it can be used to predict the water inrush from the inclined coal seam floor. (5) based on the FLAC~3D numerical simulation software, the fluid-solid coupling numerical calculation model of the inclined coal seam floor on the confined water is established, and the mining process of the working face is simulated and analyzed. The dynamic evolution process of pore water pressure and percolation vector of inclined coal seam floor has determined the high risk area of water inrush in the floor of working face. It provides a theoretical basis for water inrush prediction and prevention of inclined seam floor. (6) drawing the three-dimensional flexural surface of the deflection function of the key layer of the bottom plate of 3303 working face and the isoline cloud map of the deflection function f (XY) of the floor plate. The expression of hydraulic inrush criterion f (x0 / y 0) at the first water inrush point of the key layer of the bottom plate of 3303 working face is obtained, and the maximum limit water pressure of the key layer of the bottom plate of the working face is given.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD745.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉偉韜;穆殿瑞;劉士亮;張偉;張望寶;謝祥祥;;不同煤層傾角的底板采動(dòng)破壞特征分析[J];煤礦安全;2016年08期
2 劉偉韜;劉士亮;姬保靜;;基于正交試驗(yàn)的底板破壞深度主控因素敏感性分析[J];煤炭學(xué)報(bào);2015年09期
3 劉偉韜;廖尚輝;劉士亮;劉歡;;主成分logistic回歸分析在底板突水預(yù)測(cè)中的應(yīng)用[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年08期
4 施龍青;譚希鵬;王娟;季小凱;牛超;徐東晶;;基于PCA_Fuzzy_PSO_SVC的底板突水危險(xiǎn)性評(píng)價(jià)[J];煤炭學(xué)報(bào);2015年01期
5 段宏飛;;底板破壞深度六因素線性預(yù)測(cè)模型[J];巖土力學(xué);2014年11期
6 魯海峰;姚多喜;;采動(dòng)底板層狀巖體應(yīng)力分布規(guī)律及破壞深度研究[J];巖石力學(xué)與工程學(xué)報(bào);2014年10期
7 王佳佳;殷坤龍;肖莉麗;;基于GIS和信息量的滑坡災(zāi)害易發(fā)性評(píng)價(jià)——以三峽庫(kù)區(qū)萬(wàn)州區(qū)為例[J];巖石力學(xué)與工程學(xué)報(bào);2014年04期
8 李建林;張洪云;王心義;馮有利;劉洲;韓樂;;脆弱性指數(shù)法在煤層底板突水預(yù)測(cè)中的應(yīng)用與建議[J];煤炭學(xué)報(bào);2014年04期
9 孫建;;沿煤層傾斜方向底板“三區(qū)”破壞特征分析[J];采礦與安全工程學(xué)報(bào);2014年01期
10 王新民;康虔;秦健春;張欽禮;王石;;層次分析法-可拓學(xué)模型在巖質(zhì)邊坡穩(wěn)定性安全評(píng)價(jià)中的應(yīng)用[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
相關(guān)博士學(xué)位論文 前2條
1 孫建;傾斜煤層底板破壞特征及突水機(jī)理研究[D];中國(guó)礦業(yè)大學(xué);2011年
2 張文泉;礦井(底板)突水災(zāi)害的動(dòng)態(tài)機(jī)理及綜合判測(cè)和預(yù)報(bào)軟件開發(fā)研究[D];山東科技大學(xué);2004年
相關(guān)碩士學(xué)位論文 前4條
1 賈曉亮;基于FLAC~(3D)的斷層數(shù)值模擬及其應(yīng)用[D];河南理工大學(xué);2010年
2 朱開鵬;非均布水壓作用下采煤工作面底板破壞突水機(jī)理研究[D];煤炭科學(xué)研究總院;2009年
3 魯海峰;承壓水上采煤底板變形破壞特征數(shù)值模擬研究及其工程應(yīng)用[D];安徽理工大學(xué);2008年
4 張培森;采動(dòng)條件下底板應(yīng)力場(chǎng)及變形破壞特征的研究[D];山東科技大學(xué);2005年
,本文編號(hào):2200517
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2200517.html