基于貝葉斯網(wǎng)絡(luò)的火災(zāi)信息融合方法研究
[Abstract]:Fire is a kind of combustion process without artificial control. The basic elements of the fire are combustible, combustible and ignition sources. The physical and chemical phenomena in the combustion process can be detected. The basic purpose of the disaster alarm is to obtain the relevant information when the fire occurs and deal with it to achieve the purpose of timely and accurate alarm. Traditional sensing methods only collect smoke, temperature, light, gas and other single characteristic parameters of fire, and adopt threshold method to judge fire, which will inevitably be disturbed by the environment, which limits its sensing performance. System high false alarm rate of the problem is more prominent. This paper introduces the development process and principle of fire detection technology. The types, principles, advantages and disadvantages of several kinds of fire detectors are introduced. The traditional and artificial intelligence fire information fusion algorithms are introduced in detail, and their advantages and disadvantages are analyzed. The fire information fusion algorithm is an important part of the fire detection system. How to improve the accuracy of alarm and reduce the false alarm rate is the focus of the research. After the chapter introduces the basic principle of multi-sensor information fusion technology, through the analysis of the principle, understand the form of each information fusion structure and its advantages and disadvantages. It lays a good theoretical foundation for effectively utilizing the redundancy and diversity of sensor information, improving the timeliness and reliability of fire detection information extraction, improving the accuracy of fire detection system alarm and reducing false alarm. Several typical fire scenes are simulated by FDS software, and the information of fire characteristic parameters is obtained. The method of continuous attribute discretization is analyzed, and the Bayesian network model is constructed by using BayesiaLab. The temperature, smoke concentration and CO concentration of the fire field are taken as input variables, and the probability of smoldering, open fire and non-fire state is taken as the output quantity. The fire characteristic parameter information and Bayesian network model parameters are read by using Microsoft Visual C 6.0 editing interface, and the final information fusion results are outputted. Through the example, it can show the probability of fire state clearly and intuitively, and can make fire alarm response quickly, and can recognize the state of smoldering fire very well.
【學(xué)位授予單位】:沈陽航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TU892
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 厲劍,殷福亮,董文輝,梅志斌;火災(zāi)探測算法評估技術(shù)研究(英文)[J];火災(zāi)科學(xué);2005年03期
2 王雙成;林士敏;陸玉昌;;用貝葉斯網(wǎng)絡(luò)進(jìn)行因果分析[J];計算機科學(xué);2000年10期
3 岳博,焦李成;Bayes網(wǎng)絡(luò)最優(yōu)近似下邊緣分布的不變性[J];計算機學(xué)報;2004年07期
4 孫兆林,楊宏文,胡衛(wèi)東;基于貝葉斯網(wǎng)絡(luò)的態(tài)勢估計方法[J];計算機應(yīng)用;2005年04期
5 張鵬,郭永基;基于故障模式影響分析法的大規(guī)模配電系統(tǒng)可靠性評估[J];清華大學(xué)學(xué)報(自然科學(xué)版);2002年03期
6 趙妮,柳毅,顧中國,田夢君;基于多智能體技術(shù)的信息融合系統(tǒng)[J];探測與控制學(xué)報;2005年01期
7 杜建華,張認(rèn)成;火災(zāi)探測器的研究現(xiàn)狀與發(fā)展趨勢[J];消防技術(shù)與產(chǎn)品信息;2004年07期
8 梁玲;陳庶民;徐孟春;殷石昌;;基于貝葉斯模型的網(wǎng)絡(luò)風(fēng)險動態(tài)評估方法[J];信息工程大學(xué)學(xué)報;2007年01期
相關(guān)博士學(xué)位論文 前1條
1 張曉丹;汽車發(fā)動機故障診斷中不確定性問題的貝葉斯網(wǎng)絡(luò)解法[D];東北大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 尚峰;復(fù)合型智能火災(zāi)探測器的研究[D];大連理工大學(xué);2003年
2 謝斌;貝葉斯網(wǎng)絡(luò)在可靠性分析中的應(yīng)用[D];西南交通大學(xué);2004年
3 李小亞;基于人工智能的數(shù)據(jù)融合技術(shù)在火災(zāi)探測中的應(yīng)用研究[D];廣東工業(yè)大學(xué);2005年
4 闕夏;連續(xù)屬性離散化方法研究[D];合肥工業(yè)大學(xué);2006年
5 王麗萍;基于多傳感器信息融合技術(shù)的火災(zāi)探測系統(tǒng)研究[D];湖南大學(xué);2006年
6 傅劍鋒;基于數(shù)據(jù)融合技術(shù)的火災(zāi)探測算法研究[D];重慶大學(xué);2007年
7 張錚;基于貝葉斯分類的入侵檢測規(guī)則學(xué)習(xí)模型的研究與實現(xiàn)[D];南京航空航天大學(xué);2007年
8 謝云芳;基于貝葉斯網(wǎng)絡(luò)的配電系統(tǒng)可靠性評估[D];河北農(nóng)業(yè)大學(xué);2008年
9 雷娜;基于貝葉斯網(wǎng)絡(luò)的配電網(wǎng)可靠性及其經(jīng)濟性研究[D];北京交通大學(xué);2008年
10 路海娟;基于信息融合技術(shù)的火災(zāi)報警方法研究[D];沈陽航空工業(yè)學(xué)院;2008年
,本文編號:2143322
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2143322.html