基于自回歸求和移動(dòng)平均的冬季路溫短臨預(yù)測(cè)
發(fā)布時(shí)間:2018-06-29 08:32
本文選題:道路工程 + 路面溫度。 參考:《同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)》2017年12期
【摘要】:挖掘冬季路面溫度在其他外部變量影響下未來(lái)短時(shí)間內(nèi)的波動(dòng)規(guī)律,建立冬季路面溫度短臨預(yù)測(cè)模型.基于交通氣象監(jiān)測(cè)站的冬季歷史監(jiān)測(cè)數(shù)據(jù),利用統(tǒng)計(jì)學(xué)方法確定路面溫度的主要影響因素,應(yīng)用自回歸求和移動(dòng)平均(ARIMA)模型建模分析,對(duì)未來(lái)短時(shí)間內(nèi)的路面溫度進(jìn)行預(yù)測(cè).結(jié)果表明:允許誤差在±0.5℃和±1.0℃范圍內(nèi),未來(lái)3 h的平均預(yù)測(cè)準(zhǔn)確率分別達(dá)到81.25%和99.65%,對(duì)應(yīng)的平均絕對(duì)誤差為0.21℃和0.26℃;允許誤差在±0.5℃范圍內(nèi),未來(lái)第1 h的平均預(yù)測(cè)準(zhǔn)確率最高,平均絕對(duì)誤差最低,分別達(dá)到92.50%和0.15℃.
[Abstract]:The short-term and impending prediction model of winter pavement temperature is established by excavating the fluctuation law of winter pavement temperature under the influence of other external variables in the future. Based on the historical monitoring data of traffic meteorological monitoring station in winter, the main influencing factors of pavement temperature are determined by statistical method, and the road surface temperature in a short period of time in the future is predicted by using autoregressive summation moving average (Arima) model. The results show that in the range of 鹵0.5 鈩,
本文編號(hào):2081519
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2081519.html
最近更新
教材專著