雙高煤層底板注漿加固工作面突水機制及防治機理研究
本文選題:高水壓 + 高地應力。 參考:《中國礦業(yè)大學(北京)》2016年博士論文
【摘要】:高地應力和高水壓型“雙高”煤層注漿加固后工作面突水間題在大水礦區(qū)非常典型,受多個因素影響,包括高水壓、高地應力、注漿、采動和巖體性質(zhì)等。本文以趙固礦區(qū)注漿加固后突水工作面為工程背景,采用理論分析、TAW-2000三軸試驗機試驗、二維相似模擬試驗、數(shù)值模擬與現(xiàn)場工程試驗相結(jié)合的方法,系統(tǒng)研究了注漿加固工作面突水機制和底板巖體注漿加固防治機理,取得了如下主要創(chuàng)新成果:(1)總結(jié)分析了研究區(qū)防治水環(huán)境的復雜多變特點:①煤層埋藏深度大,地應力高;②將來下水平開拓延伸,底板灰?guī)r含水層水壓高,約10MPa;③煤層底板巖體存在斷層等破碎帶;④個別注漿加固工作面底板出水。(2)三向應力狀態(tài)條件下,注漿加固前原始巖體、破碎后加固體的力學性能有所區(qū)別。煤層開采卸壓后,高水壓區(qū)破碎巖體注漿加固后的突水機制直接關(guān)系礦井的安全生產(chǎn)。高水壓區(qū)域注漿加固后的煤層底板突水與底板巖體的應力解除有著密切關(guān)系。三軸試驗首先研究了高水壓條件下注漿前原始巖體和注漿后加固體的力學性能,然后研究了開采導致應力狀態(tài)發(fā)生變化時破碎加固巖體的力學特性和突水特征,得到以下幾點結(jié)論:①設(shè)定圍壓25Mpa和水壓6MPa條件下,對原始完整砂巖、灰?guī)r進行三軸加載實驗得到了它們的全程應力-應變曲線,此種條件下砂巖峰值強度為168MPa,灰?guī)r峰值強度為313Mpa。實驗發(fā)現(xiàn)圍壓25MPa時,峰值過后強度降低,然后達到殘余強度,中間沒有發(fā)生突水。巖樣發(fā)生了剪切破壞,剪切破壞面清晰,而巖樣頂?shù)撞棵嫱暾麤]有破壞,雖然巖樣內(nèi)部產(chǎn)生裂隙,由于25MPa圍壓和軸向加載作用6MPa水頭還無法穿透頂?shù)酌嫱暾脑嚰䦟е峦凰。裂隙是發(fā)生突水的重要條件, 受到圍壓和軸壓三向應力作用,中間存在裂隙端面完整的破壞巖樣在一定時間內(nèi)沒有發(fā)生突水。②實驗發(fā)現(xiàn)注漿加固前后巖樣的全程應力-應變曲線上升段有變化。完整試件比較致密,裂隙發(fā)育不明顯,全程應力-應變曲線上升段曲線比較平滑,沒有大的波動;而破裂巖體經(jīng)過注漿后的全程應力-應變曲線上升段會出現(xiàn)一次波動,說明破碎巖體注漿加固后仍然存在一定的裂隙及孔隙。③設(shè)計圍壓25MPa和水壓6MPa條件,比較分析了兩種不同破碎度灰?guī)r和砂巖經(jīng)過加固后強度變化特點。破碎度I灰?guī)r經(jīng)過注漿加固,有效應力峰值達到105MPa,總應力達111MPa。有效應力恢復到原始完整巖塊強度的33.5%。破碎度II灰?guī)r經(jīng)過注漿加固,有效應力峰值達到93MPa,總應力達99MPa。有效應力恢復到原始完整巖塊強度的29.7%。破碎度I砂巖經(jīng)過注漿加固,有效應力峰值達到76MPa。有效應力恢復到原始完整巖塊強度的45.2%。破碎度II砂巖經(jīng)過注漿加固,有效應力峰值達到68MPa。有效應力恢復到原始完整巖塊強度的40.5%。④在25Mpa圍壓條件下,破碎巖體強度都能夠得到提升;但是破碎度越大,強度的提升相比較破碎度小的巖體要低。比較破碎的灰?guī)r和砂巖經(jīng)過注漿加固后的強度發(fā)現(xiàn),灰?guī)r的注漿加固后強度高于砂巖。但是雖然原始完整灰?guī)r巖樣強度較砂巖高,強度提升比例卻比砂巖小。⑤進行圍壓25MPa和水壓6MPa條件下注漿加固巖體卸圍壓突水試驗。保持軸向載荷18MPa不變條件下,軸向應變不變,而在圍壓降低的過程中水流量急劇增加,軸向應變變化不大,而徑向應變明顯變化。圍壓從15MPa降低到8MPa后,徑向應變有明顯增大趨勢,之后又會減小到一定值,在圍壓反復降低到零時,徑向應變均有反應,徑向應變和垂直裂隙的擴展程度具有較強的相關(guān)性。試驗表明,煤層底板巖體中裂隙的水流量并不是常數(shù),其影響因素包括裂隙面應力、巖性和孔隙壓力。當圍壓小于水壓時,徑向應變增大,裂隙的滲水量增大;圍壓較大時,軟巖裂隙面滲透系數(shù)受應力的影響較大,使底板巖體具有較強的阻水能力。圍壓是發(fā)生突水的重要影響因素,特別是存在裂隙時,較高圍壓阻止垂向裂隙的擴展,而圍壓的解除使得突水危險性增加。⑥分析了裂隙度、波速和三軸極限強度的關(guān)系,計算比較了彈性模量和波速為參數(shù)的損傷系數(shù)。按照彈性模量計算得到破碎度I灰?guī)r經(jīng)過加固后損傷系數(shù)為0.74;破碎度II灰?guī)r經(jīng)過加固后損傷系數(shù)為0.71;破碎度I砂巖經(jīng)過加固后損傷系數(shù)為0.33;破碎度II砂巖經(jīng)過加固后損傷系數(shù)為0.24。按照波速方法計算破碎度I灰?guī)r經(jīng)過加固后損傷系數(shù)為0.78。破碎度II灰?guī)r經(jīng)過加固后損傷系數(shù)為0.71;破碎度I砂巖經(jīng)過加固后損傷系數(shù)為0.33;破碎度II砂巖經(jīng)過加固后損傷系數(shù)為0.29。兩種計算方法效果相近,也驗證了損傷系數(shù)越大,強度提升比例越小。(3)以孔隙裂隙彈性和比奧理論為基礎(chǔ),結(jié)合礦壓、斷裂力學和損傷力學等基本理論,以動態(tài)變化的思想和實測資料,研究分析了注漿加固前后巖體的流固耦合變形控制方程,建立了考慮損傷、注漿和采動影響的注漿加固工作面底板突水結(jié)構(gòu)力學模型。①根據(jù)孔隙裂隙理論對孔隙型介質(zhì)的類型進行劃分,按照底板巖體的破碎度和裂隙的連通程度,將巖體劃分為4種類型,分別是:I型—完整的隔水巖體、II型—非連通性裂隙巖體、III型—連通性裂隙巖體和Ⅳ型—破碎的巖體。并且分析了4種類型巖體的流固耦合方程。②注漿加固工作改變了底板巖體類型。注漿后,巖體類型高的破碎巖體轉(zhuǎn)變?yōu)槠扑槎鹊偷膸r體。但注漿無法改變巖體內(nèi)所包含巖石固有的力學性質(zhì),漿液主要通過充填破碎巖體中裂隙或孔隙,降低裂隙的連通性,從而使得巖體破碎類型降低。注漿效果理想時,無論是Ⅳ型破碎巖體、Ⅲ型破碎巖體,還是Ⅱ型較破碎巖體,都將變成完整的Ⅰ型巖體。礦井現(xiàn)場運用電法探測對注漿加固作用機理進行驗證,探測結(jié)果顯示注漿后煤層底板內(nèi)富水區(qū)消失。③相似試驗研究表明相比較采高4.5m和分層開采,采高6m時裂隙發(fā)育最大,裂隙數(shù)目最多,底板破壞深度最大,裂隙發(fā)育至L8灰?guī)r,且在靠近彈簧組底界面發(fā)育有裂隙,危險程度最大。試驗闡明了采動作用是工作面底板發(fā)生破壞、垂直裂隙發(fā)育、裂隙類型升高的重要原因。④實施了井下底板鉆孔注水裂隙發(fā)育試驗研究。通過現(xiàn)場注水試驗發(fā)現(xiàn),支承壓力作用下底板巖體發(fā)生破壞,增壓注水使得裂隙進一步貫通,裂隙的擴展跡線與水流方向一致。突水伴有底臌發(fā)生,而底臌破壞是底板巖體應力的顯現(xiàn),此顯現(xiàn)的控制對控制突水有很大作用。底臌量在某時刻瞬間增大,底板破壞具有突變性;支護可抑制底臌,可降低變形量和涌水量。⑤相似試驗和現(xiàn)場注水試驗很好地驗證了采動影響對底板巖體裂隙擴展的作用。采動作用可以改變巖體的類型,使巖體類型提升。采動作用影響下,當圍巖垂向應力達到巖體裂隙的貫通破壞強度條件時(σz6]),巖體中存在的裂隙在力的作用下開始發(fā)育擴展、還會貫通;經(jīng)過加固改造的巖體由于裂隙的重新發(fā)育和擴展,破碎類型升高;在煤層開采時,由于采動應力局部巖體破碎類型可能重新轉(zhuǎn)變?yōu)槌散笮突蛘撷粜推扑閹r體,為導水通道的形成創(chuàng)造條件,嚴重時可能發(fā)生底板突水事故。破壞多是由于剪切作用下局部巖體的巖橋破壞,因此導水通道-般表現(xiàn)為“小范圍、垂直”特點。⑥以孔隙裂隙彈性理論為基礎(chǔ),結(jié)合比奧理論、損傷力學、斷裂力學和礦山壓力理論,推導了用波速和壓縮系數(shù)表達的注漿加固前后巖體的流固耦合方程,同時得到了考慮損傷的注漿加固后巖體的各向異性本構(gòu)方程,并根據(jù)斷裂力學推導了裂隙擴展的破壞準則,最后建立了注漿加固工作面底板巖體“孔隙-裂隙升降型”突水結(jié)構(gòu)力學模型。(4)根據(jù)現(xiàn)場雙高礦井注漿工程套管布置密度高、長度大的特點,建立了“雙高”煤層底板注漿加固套管與圍巖相互作用力學模型。理論推導出套管容許的煤層底板最大的垂向位移公式。研究確定了底板注漿加固套管對底板變形的影響程度和控制機理。①建立注漿套管與圍巖耦合作用模型。套管一部分處于底板破壞區(qū),一部分處于圍巖穩(wěn)定區(qū),即存在某個邊界面將套管分為兩段,自由段套管(底板破壞區(qū))和固定段套管(圍巖穩(wěn)定區(qū))。對某一套管,宏觀上可視為桿件。固定段套管受固定端約束,自由段套管受套管下方分布力和套管上方巖體阻力作用。當套管上方阻力小于套管下方分布力時,套管發(fā)生向上彎曲變形。由于套管自身具有較高的抗彎性能會阻止底板變形。套管力學參數(shù)是可知的,容易求得套管的變形特征,然后根據(jù)作用與反作用的關(guān)系推導出底板變形特點,套管的受力變形和破壞特征是衡量底板注漿加固體變形和破壞的重要參數(shù)。②理論分析了單一套管抗彎性能。將注漿套管視為受分布力作用的一端固定的梁(S點為界),圍巖穩(wěn)定區(qū)內(nèi)套管受固定端約束。而按照上文分析,在彈塑性極限平衡條件下,套管的底板破壞段長度和套管下方的分布力以及套管上方巖體阻力可以求得。(a)S點處產(chǎn)生的套管彎矩Mβ(x,y)彈塑性極限平衡臨界狀態(tài)下,求解了傾角為β的套管上分布的正應力在S點產(chǎn)生的彎矩為:(?)根據(jù)彎曲條件下正應力σ與彎矩的關(guān)系σ)=My/Iz,得到套管的彎曲強度條件(b)理論求得了套管頂端最大撓度ωA和套管頂端截面轉(zhuǎn)角θA。按照懸臂梁在分布力作用下的情形計算套管頂端點A最大撓度,求得注漿套管頂端最大撓度最后得到了套管承受的底板垂向的最大變形量為:③數(shù)值模擬分別計算施加套管前、后底板破壞情況,得到以下結(jié)論。(a)無套管時,底板破壞形態(tài)符合常規(guī)數(shù)值計算結(jié)果;施加套管后,底板破壞變得不連續(xù)。由于施加套管,注漿加固體強度增大,底板破壞范圍減小;但是套管與圍巖連接處存在弱面,剪切作用下容易發(fā)生局部破壞。數(shù)值模擬研究表明施加套管后,注漿加固底板垂向位移相對加固前減小,說明套管的抗彎能力對底板巖體變形破壞起到抑制作用。與無套管相比,施加套管后A點位移量減少14%;B點位移量減少19.5%;C點位移量減少16.2%;D點位移量減少32.4%;E點位移量減少21.4%。套管對D點位移影響最大,D點位于破壞臨界處,深度相對較大,由于施加套管直接限制了此處的變形,絕對位移量變化大。E點位于被動區(qū),該區(qū)為底板破壞直觀顯現(xiàn)區(qū),同時受到深部巖體影響,過渡區(qū)加固效果對該區(qū)域的變形影響很大。(b)比較分析發(fā)現(xiàn)套管對過渡區(qū)Ⅱ影響最大,該區(qū)域是控制底板破壞的關(guān)鍵區(qū)域,將套管施加在該區(qū)域能夠更好地提升底板巖體抵抗變形破壞能力。雖然底板破壞顯現(xiàn)不可避免,但由于套管的作用,強化了過渡區(qū)Ⅱ,從而可以控制底板破壞變化。
[Abstract]:High water pressure and high water pressure type "double high" coal seam grouting reinforcement is very typical in great water mining area, which is influenced by many factors, including high water pressure, high ground stress, grouting, mining and rock mass. In this paper, the water inrush face after grouting reinforcement in Zhao Gu mining area is used as the engineering background, the theoretical analysis, the TAW-2000 three axis test is adopted. The mechanism of water inrush mechanism of grouting reinforcement working face and the mechanism of grouting reinforcement for floor rock mass are studied systematically. The main achievements are as follows: (1) the complex and changeable characteristics of water control environment in the study area are summarized and analyzed: (1) the buried depth of coal seam Large, high ground stress; (2) in the future horizontal development and extension, the water pressure of the aquifer of the bottom limestone rock is high, about 10MPa; (3) there is a fracture zone in the floor rock of the coal seam; (2) under the condition of three direction stress state, the mechanical properties of the rock after the grouting are different. After loading and unloading pressure, the mechanism of water inrush after grouting reinforcement of fractured rock mass in high water pressure area is directly related to the safety of mine production. There is a close relationship between water inrush from the floor of coal seam floor after grouting and reinforcement in high water pressure area and the stress relief of rock mass. First, the mechanics of raw rock before grouting under high water pressure and the mechanics of adding solid after grouting are first studied in the three axis test. The mechanical properties and water inrush characteristics of the broken rock mass are studied when the stress state is changed, and the following conclusions are obtained: (1) under the conditions of setting up the confining pressure 25Mpa and water pressure 6MPa, the full stress strain curves of the original intact sandstone and limestone are obtained by three axis loading experiments, and the sandstone under this condition is under this condition. When the peak strength is 168MPa, the peak strength of the limestone is 313Mpa., when the confining pressure is 25MPa, the peak strength decreases after the peak pressure, then the residual strength is reached, and there is no water inrush in the middle. The rock sample has shear failure, the shear failure surface is clear, and the bottom surface of the rock sample is intact. Although the rock sample is fractured inside, it is due to the 25MPa confining pressure and the axial direction. The loading of 6MPa water head can not penetrate the complete specimen of the top and bottom and lead to water inrush. The fracture is an important condition for water inrush. It is subjected to three direction stress by confining pressure and axial pressure. There is no water inrush in the fracture surface with complete crack end face in the middle. The whole stress strain curve of rock sample before and after grouting reinforcement was found. There is a change in the rising segment of the line. The complete specimen is compact, the fracture development is not obvious, the curve of the stress strain curve of the whole course is smooth and there is no large fluctuation, but there will be a fluctuation in the rise section of the stress-strain curve of the broken rock after grouting, which indicates that there is still a certain crack and hole after the grouting reinforcement of the broken rock body. 25MPa and water pressure 6MPa conditions are designed, and the strength changes of two kinds of fractured limestone and sandstone are compared and analyzed. The fracture degree I limestone is strengthened by grouting, the peak value of effective stress reaches 105MPa, the total stress reaches the 33.5%. breakage of the original intact rock mass and the 33.5%. crushing degree II grout with the strength of the original complete rock mass. The effective stress peak reached 93MPa, the effective stress reached 93MPa, the total stress reached 99MPa., the effective stress was restored to the strength of the original complete rock, the 29.7%. breakage I sandstone was strengthened by grouting, the effective stress peak reached the 45.2%. breakage of the original complete rock mass, the effective stress was recovered to the original complete rock strength, and the sandstone was strengthened by grouting, the effective stress peak reached 68MPa.. The effect is restored to 40.5%. of the strength of the original intact rock block. The strength of the broken rock mass can be promoted under the condition of 25Mpa confining pressure; but the greater the degree of breakage, the lower the strength of the rock mass which is smaller than the broken degree. The strength of the crushed limestone and sandstone after the grouting reinforcement is found, and the strength of the grout after the grouting is higher than that of the rock. However, although the strength of the original complete limestone is higher than that of sandstone, the ratio of strength to strength is smaller than that of sandstone. 5. Under the confining pressure 25MPa and water pressure 6MPa, the rock mass unloading test of rock mass unloading was carried out. The axial strain remained unchanged under the condition of constant axial load 18MPa, while the water flow increased sharply in the process of reducing the confining pressure, and the axial stress should be in the axial direction. When the confining pressure is reduced from 15MPa to 8MPa, the radial strain increases obviously and then decreases to a certain value. The radial strain has a reaction when the confining pressure is repeatedly reduced to zero. The radial strain and the extension of the vertical fissure have a strong correlation. The water flow of the fissure is not constant, and its influencing factors include the stress, lithology and pore pressure in the fissure surface. When the confining pressure is less than the water pressure, the radial strain increases, the seepage water of the fissure increases, and the seepage coefficient of the crack surface of the soft rock is greatly influenced by the stress when the confining pressure is large, and the rock mass has a strong water resistance ability. Confining pressure is water inrush. Important influence factors, especially in the existence of fissures, the high confining pressure prevents the expansion of the vertical fissure, and the lifting of the confining pressure increases the danger of water inrush. 6. The relationship between the crack degree, the wave velocity and the three axis ultimate strength is analyzed, and the damage coefficient of the elastic modulus and wave velocity is calculated and compared. The fracture degree I limestone is calculated according to the modulus of elasticity. After reinforcement, the damage coefficient is 0.74, the damage coefficient of fracture degree II limestone is 0.71, and the damage coefficient of fracture degree I sandstone is 0.33, and the damage coefficient of II sandstone is 0.24., and the damage coefficient is calculated in accordance with the wave velocity method, I limestone is strengthened and the damage coefficient is 0.78. crushing degree II limestone after reinforcement. The post damage coefficient is 0.71, and the damage coefficient of the fractured I sandstone is 0.33, and the damage coefficient of the broken II sandstone is similar to the two calculation methods of the damage coefficient 0.29.. The greater the damage coefficient, the smaller the proportion of the strength lifting. (3) based on the pore fracture elasticity and the Biot theory, combined with the ore pressure, fracture mechanics and loss. On the basis of the basic theory of mechanics of injury and other basic theories, the fluid solid coupling deformation control equation of rock mass before and after grouting reinforcement is studied and analyzed with dynamic changing thought and measured data. The mechanical model of water inrush structure in the floor of grouting reinforcement with the effects of damage, grouting and mining is established. (1) the type of pore type medium is divided according to the theory of pore fissure. According to the fracture degree of the rock mass and the connectivity of the fracture, the rock mass is divided into 4 types, namely: I type - complete watertight rock mass, II type - unconnected fractured rock mass, III - connected fractured rock mass and type IV - broken rock mass. And the fluid solid coupling equation of 4 types of rock mass is analyzed. The rock mass type has changed. After grouting, the broken rock mass of high rock mass is transformed into low crushing rock mass. But the grouting can not change the inherent mechanical properties of the rock included in the rock mass. The slurry is mainly filled by fissures or pores in the fractured rock mass, reducing the connectivity of the fractured rock and reducing the fracture type of the rock mass. The grouting effect is ideal. In the case of type IV fractured rock mass, type III fractured rock mass, or type II fractured rock mass, it will become a complete type I rock mass. The mechanism of grouting reinforcement is verified by electric method detection in mine site, and the detection results show that the water rich area in the floor of coal seam is disappeared after grouting. (3) similar experimental studies show that 4.5m and stratified opening are compared. When mining and mining, the maximum fracture development, the maximum fracture number, the maximum fracture depth, the crack growth to the L8 limestone, and the crack near the bottom of the spring group are the most dangerous. The experiment clarifies that the mining action is the important reason for the failure of the floor of the working face, the vertical fissure and the increase of the fracture type. (4) the bottom bottom is carried out. Through the field water injection test, it is found that the rock mass of the floor under the supporting pressure is destroyed by the field water injection test. The pressurized water injection makes the crack further through, and the crack extension trace is consistent with the flow direction. The water inrush is accompanied by the floor heave, and the floor heave is the manifestation of the bottom slab stress, and the control of this manifestation is controlled. Water inrush has a great effect. The floor heave increases instantaneously at a certain moment, the floor failure is catastrophic, the support can inhibit the floor heave and can reduce the amount of deformation and water inflow. 5. Similar test and field water injection test well verify the effect of the mining effect on the fracture expansion of the floor rock mass. Under the influence of mining action, when the vertical stress of the surrounding rock reaches the fracture strength condition of the fracture of rock mass (sigma z6]), the cracks in the rock mass begin to grow and expand under the action of force, and the fractured rock mass is raised because of the redevelopment and expansion of the fissure; in the mining of the coal, the mining of the coal seam is produced due to the mining. The breakage type of stress local rock mass may be changed into type III or type IV fractured rock mass, which creates conditions for the formation of water guide channel, and the water inrush accident may occur in serious case. Most of the damage is due to the rock bridge failure in the local rock mass under shear, so the water guide channel is characterized by "small range, vertical" characteristics. 6. Kong Xilie On the basis of gap elasticity theory, combining Biot theory, damage mechanics, fracture mechanics and mine pressure theory, the fluid solid coupling equation of rock mass before and after grouting with wave velocity and compression coefficient is derived, and the anisotropic constitutive equation of rock mass after grouting is obtained, and the fracture expansion is derived according to fracture mechanics. In the end, the mechanical model of water inrush structure of "pore fissure lifting type" in rock mass of grouting reinforcement working face is established. (4) according to the characteristics of high density and large length of casing arrangement in the double high mine grouting project, the mechanical model of the interaction between the casing and the surrounding rock of "double high" seam floor grouting is established. The maximum vertical displacement formula of the coal seam floor allowed by the casing pipe. The study determines the influence degree and the control mechanism of the floor grouting reinforcement casing to the floor deformation. (1) the coupling interaction model of the grouting casing and the surrounding rock is established. The casing part is in the bottom floor failure area, and some part is in the stability zone of the surrounding rock, that is, the casing is divided into a certain boundary surface. The two section, the free section casing (floor failure area) and the fixed section casing (the surrounding rock stability zone). For a certain casing, it can be considered as a member on the macro. The fixed section casing is restrained by the fixed end. The free segment casing is under the casing distribution force under the casing and the resistance of the rock mass above the casing. The casing bend upward when the resistance is less than the distribution force below the casing. Due to the high bending property of the casing itself, the deformation of the bottom plate can be prevented. The mechanical parameters of the casing are known, and the deformation characteristics of the casing can be easily obtained. Then the deformation characteristics of the bottom plate are derived according to the relationship between the action and the reaction. The stress deformation and failure characteristics of the casing are the important parameters of the grouting and the solid deformation and destruction. The bending performance of a single casing is analyzed theoretically. The grouting casing is regarded as a fixed beam with a distributed force (S point), and the casing in the stability zone of the surrounding rock is restricted by the fixed end. The length of the failure section of the casing bottom and the distribution force below the casing and the rock above the casing under the elastoplastic limit equilibrium condition are analyzed. The body resistance can be obtained. Under the critical state of the elastic plastic limit equilibrium of the casing bending moment M beta (x, y) produced at (a) S point, the bending moment of the positive stress distributed on the casing of the casing with the dip angle of beta is solved. (?) according to the relationship between the positive stress and the bending moment under the bending condition (?) =My /Iz, and the casing bending strength condition (b) theory is obtained to get the top of the casing. The maximum deflection of the end maximum deflection Omega A and the section angle of the top section of the sleeve is calculated according to the distribution force of the cantilever beam. The maximum deflection of the top point of the sleeve is calculated. The maximum deflection at the top of the casing pipe is obtained. Finally, the maximum deformation amount of the vertical vertical of the bottom plate under the casing is obtained. (3) the numerical simulation is used to calculate the failure of the back floor before the casing is applied and the failure of the rear bottom plate is calculated. The following conclusions are drawn: (a) the failure mode of the floor is in accordance with the conventional numerical calculation without casing, and the failure of the floor becomes discontinuous after applying the casing.
【學位授予單位】:中國礦業(yè)大學(北京)
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TD745
【相似文獻】
相關(guān)期刊論文 前10條
1 韓貴雷;;圍壓對破裂巖體注漿加固效果影響分析[J];工程勘察;2012年09期
2 王曉川;建筑基礎(chǔ)的注漿加固[J];探礦工程;1985年06期
3 吳懷國;;礦用高分子注漿加固材料安全性試驗研究[J];煤炭科學技術(shù);2013年11期
4 劉勇;呂華文;;注漿加固對回撤通道穩(wěn)定性影響的模擬分析[J];煤礦開采;2014年01期
5 耿杰;注漿加固和注水糾偏方法的設(shè)計與施工[J];西部探礦工程;2000年02期
6 張建國,,王進前;2771面注漿加固底板淺議[J];河北煤炭;1996年03期
7 劉華鋒;王正輝;;新材料注漿加固封堵永久密閉墻技術(shù)的應用[J];礦業(yè)安全與環(huán)保;2013年04期
8 楊米加,張農(nóng);破裂巖體注漿加固后本構(gòu)模型的研究[J];金屬礦山;1998年05期
9 徐興河;;軟弱煤層注漿加固的實驗室研究[J];山東煤炭科技;2006年04期
10 林青;;軟土地基注漿加固實踐[J];探礦工程(巖土鉆掘工程);2009年08期
相關(guān)會議論文 前10條
1 唐承石;;聲波檢測注漿加固巖土的性態(tài)及其判別指標[A];1990巖土混凝土聲測技術(shù)新進展學術(shù)與信息交流會專題報告及論文摘要匯編[C];1990年
2 陳勇;張小俊;宋雷;;腐蝕弱化地基注漿加固的地質(zhì)雷達檢測[A];貴州省巖石力學與工程學會2010年學術(shù)年會論文集[C];2010年
3 齊蓬勃;;董家河煤礦底板注漿加固實踐[A];安全高效礦井建設(shè)與開采技術(shù)——陜西省煤炭學會學術(shù)年會論文集(2010)[C];2010年
4 王建文;;檸條塔煤礦注漿加固方案優(yōu)化設(shè)計[A];西部礦山建設(shè)工程理論與實踐[C];2009年
5 王蘇健;高衛(wèi)乾;張順新;;注漿加固及管棚支護在巷道過破碎帶時的應用[A];安全高效礦井建設(shè)與開采技術(shù)——陜西省煤炭學會學術(shù)年會論文集(2010)[C];2010年
6 張偉寧;;原有建筑物構(gòu)筑物地基注漿加固[A];河南省土木建筑學會2010年學術(shù)大會論文集[C];2010年
7 陳緒祿;劉玉華;李志棟;;注漿加固在上海地下工程建設(shè)中的應用[A];中國土木工程學會土力學及基礎(chǔ)工程學會地基處理學術(shù)委員會第三屆地基處理學術(shù)討論會論文集[C];1992年
8 張云;唐團;張毅;許法生;;玲瓏金礦255米平巷注漿加固過程中圍巖穩(wěn)定檢測與評價[A];施工技術(shù)交流論文集[C];2005年
9 牛棟;;注漿加固、管棚支護工藝過陷落柱冒落帶技術(shù)研究與應用[A];礦山建設(shè)工程技術(shù)新進展——2008全國礦山建設(shè)學術(shù)會議文集(上)[C];2008年
10 朱錦云;趙躍平;楊雙發(fā);鐘毅;何紹林;;廣貿(mào)大廈風化卵石地基注漿加固[A];中國錨固與注漿工程實錄選[C];1995年
相關(guān)重要報紙文章 前2條
1 張延穎;河北金牛葛泉礦自主創(chuàng)新助推企業(yè)發(fā)展[N];科技日報;2007年
2 通訊員 張延穎 記者 李仁堂;葛泉礦:8個月創(chuàng)60多項科技成果[N];中國煤炭報;2007年
相關(guān)博士學位論文 前3條
1 趙鵬飛;九龍礦深部巷道注漿加固時效性分析及實踐研究[D];中國礦業(yè)大學(北京);2015年
2 李見波;雙高煤層底板注漿加固工作面突水機制及防治機理研究[D];中國礦業(yè)大學(北京);2016年
3 雷進生;碎石土地基注漿加固力學行為研究[D];中國地質(zhì)大學;2013年
相關(guān)碩士學位論文 前10條
1 劉偉;松軟厚煤層采區(qū)巷道注漿加固及支護技術(shù)研究[D];西安建筑科技大學;2015年
2 張章一;軟弱介質(zhì)充填裂隙的注漿加固機理研究[D];山東大學;2015年
3 文圣勇;深埋煤巖體注漿加固效應與控制參數(shù)研究[D];中國礦業(yè)大學;2015年
4 馬東東;改性聚氨酯注漿加固材料的制備及其性能研究[D];合肥工業(yè)大學;2015年
5 胡晶;富水區(qū)地下工程圍巖注漿加固及止水機理研究[D];重慶交通大學;2015年
6 王海龍;階段礦房充填廢石插筋注漿加固的實驗研究[D];青島理工大學;2015年
7 王剛;隧道富水地層帷幕注漿加固圈參數(shù)及穩(wěn)定性研究[D];山東大學;2014年
8 陳清通;采空區(qū)注漿加固治理漿液流動規(guī)律研究[D];遼寧工程技術(shù)大學;2008年
9 高文信;注漿加固地基承載力計算及工程應用研究[D];昆明理工大學;2008年
10 李若飛;地基注漿加固法在地鐵盾構(gòu)施工中對減少建筑物沉降的研究[D];內(nèi)蒙古科技大學;2015年
本文編號:2012937
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2012937.html