天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 安全工程論文 >

信息融合技術在礦井底板突水預測中的應用研究

發(fā)布時間:2018-05-31 22:15

  本文選題:突水預測 + 信息融合; 參考:《遼寧工程技術大學》2013年碩士論文


【摘要】:煤礦水害事故的頻發(fā),給煤礦工人的生命安全帶來隱患的同時煤礦的經濟效益也因水害受到了極大的威脅。其中,造成最嚴重危害的當屬礦井底板突水事故。由于我國煤礦特殊的水文地質條件,造成底板突水的影響因素多而且關系復雜,許多傳統(tǒng)的礦井底板突水預測方法已經不能夠在實際中達到理想的預測效果。 面對仍不完善的礦井底板突水預測法,急需新的技術理論融入其中,本文就此提出了一種雙層信息融合技術,將其應用于礦井底板突水預測中,并設計了實現(xiàn)突水預測的方案。首先,介紹了底板突水預測和信息融合技術的研究現(xiàn)狀;其次論述了多源信息融合的原理、層次結構和融合算法等,接著主要研究了基于RBF神經網絡的信息融合方法,將影響礦井底板突水的多個傳感器采集的數(shù)據經過處理后作為RBF神經網絡的輸入,通過分析選擇量子粒子群智能算法對網絡各個參數(shù)值進行優(yōu)化,建立了基于RBF神經網絡特征層信息融合的礦井底板突水預測方法。單一采用特征層信息融合的結果存在一定的不穩(wěn)定性,為了提高突水預測的可靠性,引入了D-S證據理論進行決策層信息融合,把每一個神經網絡的輸出歸一化處理后轉變?yōu)楦鱾證據體的基本概率分配函數(shù),再利用融合規(guī)則對各個證據體進行融合,根據決策規(guī)則判決,得出最后決策結果。 本文將信息融合技術引入礦井底板突水預測中,采用了雙層信息融合算法,建立了礦井底板突水預測的一般框架。經實驗分析,雙層信息融合方法所計算出的預測結果準確性高、不確定性低,在礦井底板預測領域有很好的應用前景。
[Abstract]:The frequent occurrence of mine water hazard accidents brings hidden trouble to the life safety of coal miners. Meanwhile, the economic benefits of coal mines are also greatly threatened by water hazards. Among them, the most serious harm is the mine floor water inrush accident. Because of the special hydrogeological conditions of coal mine in our country, there are many factors affecting the water inrush from the floor and the relationship is complex. Many traditional prediction methods of water inrush from the floor of the mine can no longer achieve the ideal prediction effect in practice. In the face of the imperfect prediction method of mine floor water inrush, it is urgent to incorporate new technical theory into it. In this paper, a two-layer information fusion technique is put forward, which is applied to the prediction of mine floor water inrush, and a scheme to realize the prediction of water inrush is designed. Firstly, this paper introduces the research status of water inrush prediction and information fusion technology of bottom plate, then discusses the principle, hierarchical structure and fusion algorithm of multi-source information fusion, and then mainly studies the information fusion method based on RBF neural network. The data collected by several sensors which affect the water inrush of the mine floor are processed as the input of the RBF neural network, and the parameters of the network are optimized by analyzing and selecting the quantum particle swarm intelligence algorithm. A prediction method of mine floor water inrush based on RBF neural network feature layer information fusion is established. In order to improve the reliability of water inrush prediction, the D-S evidence theory is introduced to fuse the information of decision level in order to improve the reliability of water inrush prediction. The output of each neural network is normalized and transformed into the basic probability distribution function of each evidence body, and then the fusion rules are used to fuse each evidence body, and the final decision result is obtained according to the decision rule. In this paper, the information fusion technology is introduced into the prediction of water inrush from mine floor, and a general frame of prediction of water inrush from mine floor is established by using the two-layer information fusion algorithm. The experimental results show that the prediction results calculated by the two-layer information fusion method have high accuracy and low uncertainty. It has a good application prospect in the field of mine floor prediction.
【學位授予單位】:遼寧工程技術大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TD745;TP202

【參考文獻】

相關期刊論文 前10條

1 張心彬;程久龍;李麗;薛重生;;多源信息融合技術在礦井奧灰突水預測中的應用[J];測繪科學;2006年06期

2 孫全,葉秀清,顧偉康;一種新的基于證據理論的合成公式[J];電子學報;2000年08期

3 張自政;楊勇;田立嬌;陳見行;李楊;;模糊評價分類模型在礦井底板突水判別中的應用[J];礦業(yè)安全與環(huán)保;2010年06期

4 易正俊,黃瀚敏,黃席樾;基于Dempster-shafer理論的多個神經網絡分類器融合算法[J];重慶大學學報(自然科學版);2002年07期

5 郭惟嘉,劉楊賢;底板突水系數(shù)概念及其應用[J];河北煤炭;1989年02期

6 黃國明,蘇文智;利用神經網絡預測煤層底板突水[J];華東地質學院學報;1996年02期

7 許崇寶;孫立新;張心彬;;利用多源信息方法預測煤礦水害[J];華北地震科學;2008年03期

8 姜成志;張紹兵;;建立在神經網絡基礎上的煤礦突水預測模型[J];黑龍江科技學院學報;2006年01期

9 王立平;;煤層底板突水機理及評價[J];河南理工大學學報(自然科學版);2008年05期

10 姜春露;姜振泉;張強;韓曉娟;;突水系數(shù)法評價煤層底板突水危險性的臨界值探討[J];能源技術與管理;2010年02期

,

本文編號:1961491

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1961491.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶c3e9d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com