基于相關(guān)信號(hào)分離技術(shù)的有源噪聲控制
本文選題:有源噪聲控制 + 盲信號(hào)分離; 參考:《內(nèi)蒙古工業(yè)大學(xué)》2013年碩士論文
【摘要】:隨著現(xiàn)代工業(yè)的發(fā)展,噪聲污染越來(lái)越嚴(yán)重,傳統(tǒng)的噪聲控制方法對(duì)于中高頻噪聲控制效果較好,對(duì)低頻控制效果不明顯,而有源噪聲控制方法的提出為解決這一難題帶來(lái)了希望,并且由于其具有體積小、重量輕、易于控制等優(yōu)點(diǎn),,使得很多專家和學(xué)者投入大量精力和時(shí)間致力于有源噪聲控制的研究。 現(xiàn)在有源噪聲控制技術(shù)中基本上都是根據(jù)線性自適應(yīng)濾波理論通過(guò)不同的自適應(yīng)控制算法來(lái)實(shí)現(xiàn)降噪的。但這類算法在收斂速度和穩(wěn)態(tài)失調(diào)上具有矛盾性,增大步長(zhǎng)可以加快收斂速度,同時(shí)也會(huì)增大穩(wěn)態(tài)失調(diào)。并且通常這類自適應(yīng)算法對(duì)于單通道可以取得較好的降噪量,但因多通道時(shí)計(jì)算量大、收斂速度慢,加上布放次級(jí)聲源的數(shù)目和位置難以準(zhǔn)確給出,使得多通道降噪難以實(shí)現(xiàn)取得明顯效果。 針對(duì)現(xiàn)有控制方法在多通道降噪方面的不足,本文提出了將盲信號(hào)分離技術(shù)引入到有源噪聲控制中,并以兩通道降噪模型為例,著重介紹了兩噪聲源信號(hào)相關(guān)情況下盲信號(hào)的解析分離方法。通過(guò)仿真實(shí)驗(yàn)證明了該降噪模型下實(shí)現(xiàn)相關(guān)信號(hào)分離的可行性和準(zhǔn)確性。盲分離完成后得到的兩個(gè)信號(hào)就是兩噪聲信號(hào),針對(duì)該信號(hào)做傅里葉變換,然后根據(jù)頻譜圖所示得到噪聲信號(hào)的主要頻率成分,利用這些主要頻率成分信息來(lái)完成次級(jí)聲源信號(hào)的構(gòu)造。 這種基于盲信號(hào)分離的有源噪聲控制方法與傳統(tǒng)降噪方法的不同之處在于擯棄了傳統(tǒng)的自適應(yīng)控制方法,采用盲信號(hào)分離技術(shù)實(shí)現(xiàn)混合聲源信號(hào)的分離。對(duì)于多通道降噪而言正是因?yàn)椴捎昧嗣し蛛x技術(shù),可以獲得各個(gè)噪聲信號(hào)的確切信息,從而使我們可以將多通道中的每個(gè)通道看做一個(gè)單通道去控制,能夠有針對(duì)性的來(lái)安排次級(jí)聲源的數(shù)目和位置,與傳統(tǒng)降噪方法相比這也是本文的創(chuàng)新點(diǎn)之一。文章最后通過(guò)實(shí)驗(yàn)證明了在兩通道情況下本文所討論的降噪方法能夠在長(zhǎng)287.5cm,寬175cm的區(qū)域內(nèi)取得平均3.5dB(A)的降噪量,相比傳統(tǒng)有源降噪方法獲得了更廣的消聲區(qū)域。
[Abstract]:With the development of modern industry, the noise pollution is becoming more and more serious. The traditional noise control method has better effect on middle and high frequency noise control, but not on low frequency noise control. The method of active noise control brings hope to solve this problem, and it has the advantages of small volume, light weight, easy to control and so on. Many experts and scholars devote a lot of energy and time to the study of active noise control. At present, the active noise control technology is based on the linear adaptive filtering theory through different adaptive control algorithms to achieve noise reduction. However, this kind of algorithm is contradictory in terms of convergence rate and steady-state misalignment. Increasing the step size can accelerate the convergence rate and increase the steady-state misalignment at the same time. In general, this kind of adaptive algorithm can achieve better noise reduction for a single channel, but due to the large amount of computation and the slow convergence speed of multi-channel, it is difficult to give the number and position of the secondary sound source. It makes the multi-channel noise reduction difficult to achieve obvious results. In view of the shortcomings of existing control methods in multi-channel noise reduction, a blind signal separation technique is proposed for active noise control, and a two-channel de-noising model is used as an example. An analytical separation method for blind signals with correlation between two noise sources is introduced. Simulation results show the feasibility and accuracy of the proposed model. The two signals obtained after blind separation are two noise signals. Fourier transform is made for this signal, and then the main frequency components of the noise signal are obtained according to the spectrum diagram. The main frequency component information is used to construct the secondary sound source signal. The difference between the active noise control method based on blind signal separation and the traditional noise reduction method lies in the rejection of the traditional adaptive control method and the separation of mixed sound source signals by blind signal separation technology. For multi-channel noise reduction, it is precisely because of the blind separation technology that the exact information of each noise signal can be obtained, so that we can treat each channel in the multi-channel as a single channel to control. The number and location of secondary sound sources can be arranged pertinently, which is one of the innovations in this paper compared with traditional noise reduction methods. In the end of the paper, it is proved by experiments that the noise reduction method discussed in this paper can achieve an average noise reduction of 3.5 dB / A in a region with a length of 287.5 cm and a wide 175cm. Compared with the traditional active noise reduction method, the noise reduction method can obtain a wider range of noise suppression.
【學(xué)位授予單位】:內(nèi)蒙古工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TB535
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 向小強(qiáng);傳聲器(一)[J];電聲技術(shù);2002年04期
2 向小強(qiáng);傳聲器(二)[J];電聲技術(shù);2002年06期
3 翁泰來(lái);最新修訂的揚(yáng)聲器國(guó)家標(biāo)準(zhǔn)[J];電聲技術(shù);1998年06期
4 張瑞紅,王峰林,馬連宏;封閉空間局部有源消聲理論及仿真研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);1997年01期
5 韓峰;宋英;梅秀莊;;二通道全息信號(hào)解析盲分離方法[J];機(jī)械工程學(xué)報(bào);2011年06期
6 侯宏,楊建華,孫進(jìn)才;神經(jīng)網(wǎng)絡(luò)BP算法在有源消聲中的應(yīng)用[J];西北工業(yè)大學(xué)學(xué)報(bào);1999年01期
7 姚玉紅,彭斌,胡冰霜;城市區(qū)域環(huán)境噪聲對(duì)人心理和生理功能影響研究進(jìn)展[J];現(xiàn)代預(yù)防醫(yī)學(xué);2000年04期
8 沙家正,孫廣榮,曹水軒,吳啟學(xué);有源消聲器消聲機(jī)理的研究[J];聲學(xué)學(xué)報(bào);1983年02期
9 孫旭,陳端石;次級(jí)通道模型誤差下濾波X型最小均方差算法收斂性分析[J];聲學(xué)學(xué)報(bào);2002年02期
10 蔣明峰,鄭小林,彭承琳;一種新的變步長(zhǎng)LMS自適應(yīng)算法及其在自適應(yīng)噪聲對(duì)消中的應(yīng)用[J];信號(hào)處理;2001年03期
相關(guān)博士學(xué)位論文 前1條
1 葉紅仙;機(jī)械系統(tǒng)振動(dòng)源的盲分離方法研究[D];浙江大學(xué);2008年
本文編號(hào):1940316
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1940316.html