化工裝置區(qū)爆炸沖擊波傳遞影響研究
發(fā)布時(shí)間:2018-05-01 14:15
本文選題:化工裝置 + 爆炸 ; 參考:《哈爾濱理工大學(xué)》2014年碩士論文
【摘要】:化工產(chǎn)業(yè)的飛速發(fā)展,加速了我國(guó)經(jīng)濟(jì)的快速增長(zhǎng),但是伴隨化工生產(chǎn)引發(fā)的爆炸事故問(wèn)題也成為了人們關(guān)注的重點(diǎn),一旦發(fā)生事故,便會(huì)引起重大的人身傷亡及財(cái)產(chǎn)損失。因此,研究化工裝置區(qū)在爆炸沖擊波作用下的響應(yīng)對(duì)于解決化工裝置的安全防護(hù)問(wèn)題具有極大的實(shí)際意義和理論價(jià)值。 為了解決化工裝置復(fù)雜系統(tǒng)爆炸的影響,本文應(yīng)用大型非線性顯示動(dòng)力分析軟件ANSYS/LS-DYNA針對(duì)化工裝置區(qū)在爆炸荷載作用下的響應(yīng)問(wèn)題進(jìn)行了以下幾個(gè)方面的數(shù)值模擬: 1.利用ANSYS建立有限元模型,模擬了無(wú)限空氣域中無(wú)障礙物爆炸的沖擊波傳播,利用后處理軟件LS-PREPOST分析了沖擊波在空氣中傳播的超壓變化,并將數(shù)值模擬結(jié)果與經(jīng)驗(yàn)公式結(jié)果進(jìn)行對(duì)比,通過(guò)分析比較,,得出數(shù)值模擬結(jié)果與經(jīng)驗(yàn)公式計(jì)算結(jié)果基本吻合,由此可知數(shù)值模擬在爆炸仿真方面具有一定的可行性。 2.當(dāng)無(wú)限空氣域中設(shè)置剛性障礙物時(shí),本文對(duì)爆炸沖擊波傳播情況進(jìn)行了數(shù)值模擬,并分析沖擊波經(jīng)過(guò)障礙物時(shí)的傳播規(guī)律和前后超壓變化。 3.以一特定化工裝置區(qū)為例,研究了沖擊波在受壓裝置周圍區(qū)域的傳播情況,詳細(xì)分析了爆炸沖擊波在裝置區(qū)周圍的等效應(yīng)力分布情況及受壓裝置前后的沖量變化情況。 本文通過(guò)數(shù)值模擬化工裝置周圍區(qū)域的超壓及沖量變化情況,分析不同仿真得到的超壓數(shù)據(jù),得到受壓裝置受到?jīng)_擊波損壞最嚴(yán)重的部位,為工業(yè)爆炸中化工裝置的安全防護(hù)提供了理論基礎(chǔ)和借鑒。
[Abstract]:The rapid development of chemical industry accelerates the rapid economic growth of our country, but the explosion accident caused by chemical production has also become the focus of attention. Once the accident occurs, it will cause serious casualties and property losses. Therefore, it is of great practical significance and theoretical value to study the response of chemical plant area under the action of blast wave for solving the problem of safety protection of chemical plant. In order to solve the effect of explosion in complex system of chemical plant, this paper applies large-scale nonlinear display dynamic analysis software ANSYS/LS-DYNA to simulate the response of chemical plant area under explosion load in the following aspects: 1. The finite element model of ANSYS is used to simulate the propagation of shock wave in an unobstructed explosion in the infinite air domain. The overpressure variation of shock wave propagation in the air is analyzed by the post-processing software LS-PREPOST. By comparing the results of numerical simulation and empirical formula, it is concluded that the results of numerical simulation are in good agreement with those of empirical formula, which shows that numerical simulation is feasible in explosive simulation. 2. When rigid obstacles are set up in the infinite air domain, the propagation of blast wave is numerically simulated, and the propagation law of shock wave passing through the obstacle and the change of overpressure before and after are analyzed. 3. Taking a specific chemical plant as an example, the propagation of shock wave in the area around the compression device is studied. The distribution of equivalent stress around the area of the explosive shock wave and the variation of impulse before and after the compression device are analyzed in detail. In this paper, the overpressure and impulse change around the chemical plant are simulated numerically, and the overpressure data obtained from different simulation are analyzed, and the most seriously damaged parts of the pressured device are obtained. It provides a theoretical basis and reference for the safety protection of chemical plant in industrial explosion.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TQ086.1
【引證文獻(xiàn)】
相關(guān)期刊論文 前1條
1 衛(wèi)維劍;;化工裝置爆炸事故模式及預(yù)防研究[J];石化技術(shù);2016年04期
本文編號(hào):1829719
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1829719.html
最近更新
教材專著