基于MapObjects與ANN耦合技術(shù)的底板突水危險性評價
本文選題:底板突水 + MapObjects��; 參考:《太原理工大學(xué)》2013年碩士論文
【摘要】:長期以來,受煤層底板突水的困擾,導(dǎo)致許多礦井的生產(chǎn)能力達不到設(shè)計標(biāo)準(zhǔn),嚴(yán)重影響了煤礦的正常生產(chǎn)。因此,查清礦井水文地質(zhì)條件、研究礦井突水機理與底板突水危險性評價,對防治煤層底板突水實現(xiàn)煤礦安全生產(chǎn)具有非常重要的理論與現(xiàn)實意義。 本文通過分析底板突水影響因素,使用底板突水理論,獲得影響新河煤礦煤層底板突水的主要地質(zhì)因素,包括:斷裂強度、斷裂密度、隔水層厚度、奧灰水壓以及奧灰頂部富水性等,為數(shù)值計算提供了基礎(chǔ)資料。其中斷裂在空間分布上具有不連續(xù)性的特點,故斷裂密度和斷裂強度為不連續(xù)性指標(biāo),隔水層厚度、奧灰水壓以及奧灰頂部富水性在空間分布上具有連續(xù)性的特點,稱為連續(xù)性指標(biāo),作為煤層底板突水危險性評價指標(biāo)體系的指標(biāo)參數(shù)。利用MapObjects強大的空間分析功能與人工神經(jīng)網(wǎng)絡(luò)(ANN)高度的非線性特性的耦合進行空間信息處理。本文為實現(xiàn)MapObjects與ANN的耦合,特研發(fā)了MGSPA2008,該系統(tǒng)具有強大的空間分析功能和顯示功能。首先利用該軟件畫出礦區(qū)地圖,并生成評價單元,把斷層文件與評價單元輸入并與評價單元疊加,將隔水層厚度、奧灰水壓以及奧灰頂部富水性指數(shù)導(dǎo)入系統(tǒng)數(shù)據(jù)層,通過空間分析,統(tǒng)計分析出每一個評價單元的斷裂強度、含水層水壓、阻水層的厚度、斷裂密度和含水層富水性指數(shù)。將上述指標(biāo)參數(shù)導(dǎo)入人工神經(jīng)網(wǎng)絡(luò)(ANN),利用訓(xùn)練好的BP網(wǎng)絡(luò)對煤層底板突水進行危險性評價,提高了突水危險性評價的準(zhǔn)確性。根據(jù)評價結(jié)果按照突水危險性程度將評價區(qū)域劃分為危險區(qū)、較危險區(qū)、過渡區(qū)和安全區(qū)。實踐證明評價結(jié)果符合實際情況,為煤礦合理的安排生產(chǎn)工作和預(yù)防煤礦突水提供了依據(jù)。
[Abstract]:For a long time, because of the water inrush from coal seam floor, the production capacity of many coal mines can not reach the design standard, which seriously affects the normal production of coal mine. Therefore, it is of great theoretical and practical significance to investigate the hydrogeological conditions of coal mines and study the mechanism of water inrush and the assessment of the risk of water inrush from the floor of the coal seam in order to prevent and control the water inrush from the floor of coal seam to realize the safe production of coal mine. By analyzing the influencing factors of floor water inrush and using the theory of floor water inrush, the main geological factors influencing water inrush of coal seam floor in Xinhe coal mine are obtained, including fracture strength, fracture density, thickness of water barrier layer. The water pressure of the Ordovician ash and the wateriness of the top of the Ordovician ash provide the basic data for the numerical calculation. Among them, faults have discontinuity in spatial distribution, so fracture density and fracture strength are discontinuity indexes, the thickness of water-barrier layer, the water pressure of Ordovician ash and the water-rich water of the top of Ordovician ash have the characteristics of continuity in spatial distribution. It is called continuity index, which is the index parameter of water inrush risk evaluation index system of coal seam floor. The spatial information processing is based on the coupling of the strong spatial analysis function of MapObjects and the high nonlinearity of Ann. In order to realize the coupling between MapObjects and ANN, this paper develops MGSPA2008.This system has powerful spatial analysis function and display function. Firstly, the map of mining area is drawn out by the software, and the evaluation unit is generated. The fault file is input with the evaluation unit and superimposed with the evaluation unit. The thickness of the water-barrier layer, the water pressure of the Ordovician ash and the water-rich index of the top of the Ordovician ash are introduced into the data layer of the system. Through spatial analysis, the fracture strength, aquifer water pressure, thickness of water barrier layer, fracture density and water-rich index of each evaluation unit are analyzed statistically. The above parameters are introduced into the artificial neural network and the trained BP network is used to evaluate the risk of water inrush from coal seam floor. The accuracy of water inrush assessment is improved. According to the evaluation results, the evaluation area is divided into dangerous area, relatively dangerous area, transitional area and security zone according to the degree of water inrush. It is proved by practice that the evaluation result accords with the actual situation and provides the basis for rational arrangement of production work and prevention of water inrush in coal mines.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TD745
【參考文獻】
相關(guān)期刊論文 前10條
1 楊天鴻,徐濤,馮啟言,唐春安;脆性巖石破裂過程滲透性演化試驗[J];東北大學(xué)學(xué)報;2003年10期
2 夏筱紅;楊偉峰;崔道偉;劉浪濤;趙娟娟;趙朋朋;;采場底板巖石滲透性試驗研究[J];礦業(yè)安全與環(huán)保;2006年03期
3 譚志祥;斷層突水的力學(xué)機制淺析[J];礦業(yè)安全與環(huán)保;1999年03期
4 中國生;江文武;徐國元;;底板突水的突變理論預(yù)測[J];遼寧工程技術(shù)大學(xué)學(xué)報;2007年02期
5 王連國,宋揚;煤層底板突水突變模型[J];工程地質(zhì)學(xué)報;2000年02期
6 周瑞光,成彬芳,葉貴鈞,武強;斷層破碎帶突水的時效特性研究[J];工程地質(zhì)學(xué)報;2000年04期
7 代長青,何廷峻;承壓水體上采煤底板斷層突水規(guī)律的研究[J];安徽理工大學(xué)學(xué)報(自然科學(xué)版);2003年04期
8 裔傳標(biāo),葛均剛;張集煤礦2·18特大水害水源的快速判別和認(rèn)識[J];江蘇煤炭;1998年01期
9 丁嚴(yán)明;朱莊煤礦6煤底板突水原因分析及綜合防治[J];煤炭技術(shù);2004年10期
10 劉天泉;申寶宏;張金才;;長壁工作面頂?shù)装鍛?yīng)力和位移的實驗研究[J];煤炭科學(xué)技術(shù);1990年12期
,本文編號:1828064
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1828064.html