高瓦斯煤層井下穿層水力壓裂強(qiáng)化增透技術(shù)研究
本文選題:水力壓裂 + 煤與瓦斯突出; 參考:《安徽理工大學(xué)》2017年碩士論文
【摘要】:本文運(yùn)用理論研究、數(shù)值模擬與現(xiàn)場試驗(yàn)的相結(jié)合的方法,將新莊孜礦C13煤層作為試驗(yàn)對象,考察了水力壓裂的實(shí)施起到的作用。事實(shí)證實(shí),水力壓裂工作實(shí)施后,C13煤層的瓦斯?jié)舛却蠓冉档、瓦斯抽采率大大提高、透氣性明顯有所改善,有效的預(yù)防了煤與瓦斯突出的可能性。對水力壓裂增透理論進(jìn)行了研究,大直徑鉆孔能夠使鉆孔周圍卸壓范圍增大;鉆孔周圍裸露的煤體大大增多;煤體內(nèi)氣體流動(dòng)性增強(qiáng),透氣性大幅度改善。運(yùn)用RFPA2D軟件進(jìn)行模擬實(shí)驗(yàn),煤層起裂壓力為30MPa,壓裂結(jié)束后,裂隙延伸擴(kuò)展長度可達(dá)到35~40m左右;按照應(yīng)力的分布情況把鉆孔四周的煤體可劃成四個(gè)區(qū)域,從中心位置到煤體深部依次為:卸壓區(qū)(0~35m);集中區(qū)(35~50m);過渡區(qū)(50~62.5m);原始應(yīng)力區(qū)(62.5m)。單孔水力壓裂影響范圍半徑可達(dá)35m;通過水力壓裂的實(shí)施,煤層滲透性一定程度上得到了改善,提高了將近25倍。壓裂過程中,水流量最高可達(dá)400m3/(d.m),說明煤體的滲透性顯著得到改善。根據(jù)壓裂區(qū)域煤層含水率的變化規(guī)律,初步判斷壓裂半徑大于50m;根據(jù)壓裂區(qū)域煤體內(nèi)的瓦斯含量變化規(guī)律得知,壓裂半徑在30~50m之間。鉆孔40m區(qū)域內(nèi),壓裂效果明顯,瓦斯含量顯著下降,說明在壓裂孔影響范圍達(dá)到40m。根據(jù)壓裂區(qū)域煤層含水率的變化規(guī)律,初步判斷壓裂半徑大于50m;通過測定未壓裂的煤體的瓦斯壓力為4.9MPa,水力壓裂過后,通過求解,瓦斯壓力急劇減小,減小至1MPa;原始的透氣性系數(shù)為0.032m2/MPa2·d,壓裂過后,增大到0.840m2/MPa2·d,壓裂效果顯著,一定程度上改善了煤層的透氣性。通過水力壓裂現(xiàn)場試驗(yàn),證實(shí)了數(shù)值模擬的準(zhǔn)確性,水力壓裂技術(shù)的實(shí)施可有效改善煤層的透氣性,提高瓦斯抽采率,降低了煤與瓦斯的突出危險(xiǎn)性,保證了采煤工作可以安全高效的進(jìn)行。
[Abstract]:In this paper, the C13 coal seam of Xinzhuangzi Mine is taken as the test object by the method of theoretical research, numerical simulation and field test, and the effect of hydraulic fracturing is investigated. It is proved that after hydraulic fracturing, the gas concentration of coal seam C13 is greatly reduced, the gas extraction rate is greatly increased, and the permeability is obviously improved, which effectively prevents the possibility of coal and gas outburst. The anti-permeability theory of hydraulic fracturing is studied. The large diameter borehole can increase the pressure relief range around the borehole; the exposed coal body around the borehole increases greatly; the gas fluidity of coal body is enhanced and the gas permeability is greatly improved. The RFPA2D software is used to simulate the experiment. The fracture initiation pressure is 30 MPA. After fracturing, the extension length of the fracture can reach 35 ~ 40 m. According to the stress distribution, the coal body around the borehole can be divided into four areas. From the central position to the deep part of the coal body, the order is as follows: the pressure relief area is 0 ~ (35) m ~ (-1), the concentration area is 35 ~ (50) m ~ (-1), the transition area is 50 ~ 62.5 m ~ (-1), and the original stress area is 62.5 m ~ (-1). The radius of single hole hydraulic fracturing can reach 35 m.The permeability of coal seam is improved to a certain extent by hydraulic fracturing, which is nearly 25 times higher. During fracturing, the maximum water flow rate can reach 400 m3 / d. M, which indicates that the permeability of coal body has been improved significantly. According to the variation rule of water cut of coal seam in fracturing area, the fracture radius is more than 50m, and the fracture radius is between 30m and 50m according to the change rule of gas content in coal body in fracturing area. The effect of fracturing is obvious and the gas content is significantly decreased in the 40m area of borehole, which indicates that the influence range of fracturing hole is 40m. According to the variation rule of water cut of coal seam in fracturing area, the fracture radius is more than 50 m, the gas pressure of coal body without fracturing is 4.9 MPA, after hydraulic fracturing, the gas pressure decreases sharply after hydraulic fracturing. The original permeability coefficient is 0.032m2/MPa2 d, and after fracturing, it increases to 0.840m2/MPa2 d, the effect of fracturing is remarkable, and the permeability of coal seam is improved to some extent. The accuracy of numerical simulation is proved by the field test of hydraulic fracturing. The application of hydraulic fracturing technology can effectively improve the permeability of coal seam, increase the gas extraction rate and reduce the danger of coal and gas outburst. It ensures that the coal mining work can be carried out safely and efficiently.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD712.62
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;數(shù)值模擬水力壓裂裂隙的擴(kuò)展和增大[J];煤礦安全;2008年06期
2 連志龍;張勁;王秀喜;吳恒安;薛炳;;水力壓裂擴(kuò)展特性的數(shù)值模擬研究[J];巖土力學(xué);2009年01期
3 李洋;;水力壓裂開采頁巖氣對環(huán)境有害[J];國外油田工程;2010年09期
4 楊維;白治平;王春孝;;子長采油廠水力壓裂與產(chǎn)量關(guān)系評價(jià)[J];硅谷;2010年19期
5 趙寶滔;牛曉東;孟凡冊;;水力壓裂施工方案研究[J];科技資訊;2012年15期
6 楊景寧;;美國國會(huì)簡報(bào)關(guān)注水力壓裂引發(fā)的環(huán)境和地震問題[J];國際地震動(dòng)態(tài);2013年04期
7 洪世鐸;水力壓裂理論[J];石油鉆采工藝;1980年01期
8 劉蜀知,任書泉;水力壓裂裂縫三維延伸數(shù)學(xué)模型的建立與求解[J];西南石油學(xué)院學(xué)報(bào);1993年S1期
9 ;水力壓裂法[J];環(huán)境與生活;2012年05期
10 喬繼彤,張若京,姚飛,蔣闐;水力壓裂的二維溫度場分析[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年04期
相關(guān)會(huì)議論文 前10條
1 張若京;;地下能源開發(fā)的重要技術(shù)——水力壓裂[A];力學(xué)與西部開發(fā)會(huì)議論文集[C];2001年
2 劉建軍;杜廣林;薛強(qiáng);;水力壓裂的連續(xù)損傷模型初探[A];第十二屆全國疲勞與斷裂學(xué)術(shù)會(huì)議論文集[C];2004年
3 李連崇;梁正召;李根;馬天輝;;水力壓裂裂縫穿層及扭轉(zhuǎn)擴(kuò)展的三維模擬分析[A];第十一次全國巖石力學(xué)與工程學(xué)術(shù)大會(huì)論文集[C];2010年
4 李傳華;陳勉;金衍;;層狀介質(zhì)水力壓裂模擬實(shí)驗(yàn)研究[A];巖石力學(xué)新進(jìn)展與西部開發(fā)中的巖土工程問題——中國巖石力學(xué)與工程學(xué)會(huì)第七次學(xué)術(shù)大會(huì)論文集[C];2002年
5 劉闖;劉合;李向陽;吳恒安;;頁巖氣水平井水力壓裂多縫間距優(yōu)化研究[A];中國力學(xué)大會(huì)——2013論文摘要集[C];2013年
6 楊麗芳;張陳芳;陽國桂;王路偉;;油田水力壓裂過程中示蹤砂用量計(jì)算[A];第三屆全國核技術(shù)與應(yīng)用學(xué)術(shù)研討會(huì)會(huì)議資料文集[C];2012年
7 李家祥;張文泉;;井下水力壓裂應(yīng)力測量[A];首屆全國青年巖石力學(xué)學(xué)術(shù)研討會(huì)論文集[C];1991年
8 朱禮軍;陳勉;金衍;;松軟地層水力壓裂縫寬預(yù)測[A];新世紀(jì)巖石力學(xué)與工程的開拓和發(fā)展——中國巖石力學(xué)與工程學(xué)會(huì)第六次學(xué)術(shù)大會(huì)論文集[C];2000年
9 陽國桂;李錦富;;同位素水力壓裂示蹤用示蹤劑的研制[A];第三屆全國核技術(shù)與應(yīng)用學(xué)術(shù)研討會(huì)會(huì)議資料文集[C];2012年
10 鄢旭彬;饒少瑩;任海龍;王軍紅;;水力壓裂工藝技術(shù)的應(yīng)用[A];油氣藏改造壓裂酸化技術(shù)研討會(huì)會(huì)刊[C];2014年
相關(guān)重要報(bào)紙文章 前10條
1 史蒂芬·科恩 編譯 王林;對水力壓裂法應(yīng)該寬容一些[N];中國能源報(bào);2012年
2 盧克·亨特 王林 編譯;水力壓裂法在東南亞難應(yīng)用[N];中國能源報(bào);2013年
3 蘇珊·布蘭特利 安娜·美耶_撤,
本文編號:1795818
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1795818.html