基于通風(fēng)網(wǎng)絡(luò)模擬的金山店鐵礦東區(qū)通風(fēng)方式選擇
本文選題:金山店鐵礦 + 多中段通風(fēng) ; 參考:《武漢科技大學(xué)》2013年碩士論文
【摘要】:金山店鐵礦由于張福山村搬遷滯后,,東區(qū)下降速度明顯低于西區(qū),形成了-340m中段、-410m中段同時(shí)開采局面,造成整體通風(fēng)系統(tǒng)回風(fēng)混亂,東、西區(qū)難以形成安全有效通風(fēng)網(wǎng)絡(luò)。依據(jù)金山店鐵礦礦區(qū)現(xiàn)有通風(fēng)系統(tǒng)分布及中段平面布置狀況,基于ANSYS—CFX流體模擬軟件,提出了以負(fù)壓截面代替風(fēng)機(jī)出口處負(fù)壓的建模方法,構(gòu)建了礦區(qū)整體通風(fēng)模擬網(wǎng)絡(luò)三維模型。系統(tǒng)模擬了現(xiàn)有通風(fēng)網(wǎng)絡(luò)的風(fēng)流流線分布及風(fēng)流流動方向,辨識出多中段開采時(shí)-410m中段污風(fēng)對-340m中段的風(fēng)流污染以及礦區(qū)存在局部通風(fēng)不良區(qū)域等問題。為尋求多中段開采通風(fēng)優(yōu)化系統(tǒng),選取金山店鐵礦老副井-340m中段回風(fēng)、老副井-270m中段回風(fēng)、新回風(fēng)井-340m中段回風(fēng)、新回風(fēng)井-270m中段回風(fēng)四種可行方案,模擬分析了各方案的進(jìn)風(fēng)井風(fēng)速及出風(fēng)口負(fù)壓,以滿足風(fēng)量要求和風(fēng)機(jī)能耗最小為原則,確定了新回風(fēng)井-270m中段回風(fēng)為最優(yōu)方案。利用正交試驗(yàn)分析方法,選取中央溜破系統(tǒng)風(fēng)機(jī)負(fù)壓、西回風(fēng)井風(fēng)機(jī)負(fù)壓、東區(qū)新回風(fēng)井風(fēng)機(jī)負(fù)壓為研究對象,分別對老主井、西回風(fēng)井、新回風(fēng)井出口風(fēng)速進(jìn)行了三因素三水平顯著性方差分析,建立了選擇風(fēng)機(jī)負(fù)壓參數(shù)調(diào)節(jié)風(fēng)量分配的風(fēng)機(jī)負(fù)壓—出口風(fēng)速函數(shù),實(shí)現(xiàn)了通風(fēng)系統(tǒng)風(fēng)量、風(fēng)壓優(yōu)化分配。 利用ANSYS—CFX流體模擬軟件,以負(fù)壓截面代替風(fēng)機(jī)出口處風(fēng)壓技術(shù)建立的礦區(qū)整體通風(fēng)系統(tǒng)模擬模型,實(shí)現(xiàn)了通風(fēng)系統(tǒng)存在問題辨識,方案優(yōu)化,通風(fēng)系統(tǒng)參數(shù)選擇,克服了礦山網(wǎng)絡(luò)模擬不能實(shí)現(xiàn)礦山整體模擬的不足,具有較強(qiáng)的適用性。
[Abstract]:Due to the lagging of the relocation of the Zhang Fushan Village, the decline rate of the east area is obviously lower than that in the west area. The middle section of the -340m is formed, and the middle section of -410m is simultaneously mined, resulting in the chaos of the whole ventilation system, and the safe and effective ventilation network is difficult to form in the East and west area. Based on the ANSYS - CFX fluid simulation software, the modeling method of negative pressure cross section instead of the negative pressure at the outlet of the fan is put forward. A three-dimensional model of the whole ventilation simulation network in the mining area is constructed. The flow line distribution and the flow direction of the existing ventilation network are systematically simulated and the wind flow in the middle section of the -410m section of the middle section of the -340m is identified. In order to find the ventilation optimization system in the middle section of the multi middle section, select the return air of the -340m middle section of the old auxiliary shaft of Jinshan iron mine, the return air in the middle -270m of the old auxiliary shaft, the back air in the -340m middle section of the new return air well and the return air of the new return air well, -270m middle section, and simulate and analyze the wind speed of the air wells in each scheme and the analysis of the wind speed in each scheme. In order to meet the requirement of air volume and the minimum energy consumption of the fan, the optimum scheme for the return air in the -270m middle section of the new return air well is determined. By using the orthogonal test analysis method, the negative pressure of the fan in the central slip system, the negative pressure of the West return air blower and the negative pressure of the new return air fan in the east area are selected as the research object, and the old main well, the West return air well and the new return are respectively returned. The wind shaft outlet wind speed has been analyzed by three factors and three level significant variance analysis. The negative pressure outlet wind speed function of fan is set up to adjust the air flow distribution of the fan negative pressure parameters, and the ventilation system air volume and the wind pressure are optimized.
Using the ANSYS - CFX fluid simulation software, the whole ventilation system simulation model of the mining area is established by the negative pressure section instead of the wind pressure technology at the outlet of the fan. The problem identification of the ventilation system, the optimization of the scheme, the selection of the ventilation system parameters have been realized, and the shortage of the mine network simulation can not be realized in the whole simulation of the mine is overcome, and it has strong applicability.
【學(xué)位授予單位】:武漢科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TD724
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董志周;;新建路隧道東線通風(fēng)模擬分析[J];城市道橋與防洪;2008年12期
2 丁永明;李誠玉;陸衛(wèi)東;李大方;;葦湖梁煤礦通風(fēng)系統(tǒng)的優(yōu)化[J];礦業(yè)安全與環(huán)保;2011年01期
3 王新;;基于CFX軟件的瓦斯爆炸災(zāi)害氣體擴(kuò)散模擬[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年01期
4 朱曉天;羅智星;yN麗;王建康;;熱壓通風(fēng)建筑的風(fēng)路設(shè)計(jì)與風(fēng)場模擬[J];建筑科學(xué);2008年04期
5 姚尚文;盧平;朱衛(wèi)國;;新湖礦通風(fēng)系統(tǒng)改造與優(yōu)化模擬分析[J];煤炭科學(xué)技術(shù);2006年11期
6 于建偉;張歡;于燕玲;;污水隧道縱向通風(fēng)CFD仿真模擬與試驗(yàn)研究[J];山東建筑大學(xué)學(xué)報(bào);2007年04期
7 張曉明;李風(fēng);謝元一;汪鵬;;秦嶺終南山隧道火災(zāi)工況下的通風(fēng)模擬[J];消防科學(xué)與技術(shù);2007年06期
8 趙千里,劉劍;用礦井通風(fēng)仿真系統(tǒng)(MVSS)確定通風(fēng)系統(tǒng)優(yōu)化改造方案[J];中國安全科學(xué)學(xué)報(bào);2002年02期
9 高建良,張生華;壓入式局部通風(fēng)工作面風(fēng)流分布數(shù)值模擬研究[J];中國安全科學(xué)學(xué)報(bào);2004年01期
10 漆旺生,蔡嗣經(jīng),沈士成;祁南煤礦通風(fēng)系統(tǒng)分析與優(yōu)化[J];中國安全科學(xué)學(xué)報(bào);2004年02期
本文編號:1789587
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1789587.html