CFD模型下采空區(qū)瓦斯抽采與防火研究
本文選題:地面鉆井 + 瓦斯抽采; 參考:《中國礦業(yè)大學》2017年碩士論文
【摘要】:作為高瓦斯復雜煤層群開采的典型,淮南礦區(qū)在煤與瓦斯共采領域取得了很大成功。本文以地面井產(chǎn)氣成功率較高的丁集礦為研究礦區(qū),對保護層開采下采空區(qū)卸壓瓦斯分布規(guī)律、鉆井抽采下采空區(qū)瓦斯運移規(guī)律、抽采下采空區(qū)三帶分布變化和地面鉆井優(yōu)化布置進行了系統(tǒng)研究,以瓦斯涌出量大小為依據(jù),提出了針對含瓦斯易自燃煤層采空區(qū)注氮、合理抽采等綜合防治技術。結合采空區(qū)高位環(huán)形裂隙體理論,確定了地面井布置的最佳位置,考察分析了丁集礦保護層工作面開采下鉆井產(chǎn)氣量隨采動的變化關系,對卸壓瓦斯流態(tài)特征、地面鉆井防破壞措施、施工要點與產(chǎn)氣變化規(guī)律等問題進行了總結。以計算流體力學模擬軟件FLUENT為研究工具,編制自定義函數(shù)設置采空區(qū)滲透率分布、瓦斯涌出量大小等參數(shù),模擬得出了地面井抽采下采空區(qū)瓦斯運移分布規(guī)律及抽采對采空區(qū)三帶分布的影響:(1)鉆井抽采會在采空區(qū)形成低壓區(qū),增大氧氣從周圍裂隙向采空區(qū)的侵入范圍,采空區(qū)氣體流場分布與鉆井布置位置相關。淺部地面井抽采能更有效地降低回風巷瓦斯?jié)舛?高濃度瓦斯可在深部形成惰化區(qū)。深部地面井可抽采上被保護層卸壓釋放的高濃度瓦斯,但更容易將氧氣向采空區(qū)深部轉移,尤其大流量抽采時使深部氧氣含量急劇增大。(2)井上下立體抽采易使得采空區(qū)內(nèi)部漏風通道間相互貫通,采空區(qū)注氮可很好地惰化采場進風側與深部區(qū)域,在相同注氮流量下,采空區(qū)深部注氮比淺部注氮可更有效地惰化整個采場,但回風側由于漏風強烈使得氮氣流失,存在氧化高溫區(qū)。(3)聯(lián)合鉆井抽采可在采空區(qū)內(nèi)形成較為均勻分布的低壓區(qū),對大走向采空區(qū)能合理地分配抽采能力,在保證抽采濃度的同時,不會導致采空區(qū)富氧帶范圍急劇擴大,能最大化抽取采空區(qū)卸壓瓦斯。(4)礦井瓦斯涌出量小于40m3/min時,采用井下瓦斯抽采即可很好的治理瓦斯超限問題,瓦斯涌出量大于40m3/min是,需綜合采取礦井上下立體抽采措施,才可有效控制瓦斯超限問題;茨隙〖V區(qū)保護層卸壓瓦斯井上下立體抽采工程實踐表明,瓦斯抽采流量隨工作面推進引起的采動裂隙演化而發(fā)生變化,地面鉆井的抗破壞能力對于瓦斯高效、長期抽采有很大影響。在鉆井成功的情況下,高效抽采可以持續(xù)6個月以上的時間,工作面收作以后,仍可抽采卸壓與采空區(qū)積聚瓦斯,有效抽采周期最長達3年以上。丁集礦考察期間地面鉆井抽采的月平均抽采純流量6.32~14.27m3/min,累積總抽采純量16635631m3,占總抽采量的27.52%。工作面高抽巷和頂板鉆孔的月平均抽采純流量2.87~20.63m3/min,累積總抽采純量30326880 m3,占總抽采量的50.16%。地面鉆井、井下高抽巷和走向鉆孔抽采瓦斯?jié)舛容^高、時間較長,不影響井下煤炭生產(chǎn),可有效治理高瓦斯煤層的瓦斯災害問題。論文的研究高瓦斯礦井瓦斯治理與瓦斯抽采過程下自燃防治有一定的參考和借鑒意義。
[Abstract]:As the typical mining of high gas and complex coal seam group, the Huainan mining area has made great success in the field of coal and gas CO production. This paper takes the Buji mine with high success rate of the ground gas production as the research area, the distribution law of pressure relief gas distribution in the goaf under the protection layer, the law of gas migration in the goaf under drilling, and the three band in the mined out area under extraction. On the basis of the size of gas emission, the comprehensive prevention and control technology for nitrogen injection and reasonable extraction in goaf containing gas and easy spontaneous combustion coal seam is put forward on the basis of the size of gas emission. The gas flow rate under the working face is dependent on the change of production, the characteristics of pressure relief gas flow pattern, ground drilling anti failure measures, construction key points and gas production change law are summarized. The calculation of fluid mechanics simulation software FLUENT is used as the research tool to set up the permeability distribution in the goaf area and the gas emission is large. The distribution law of gas migration in the mined out area under ground well extraction and the influence of extraction on the three belt distribution in the goaf are simulated. (1) the drilling extraction will form a low pressure area in the goaf, increase the invasion range of oxygen from the surrounding fissure to the goaf, and the distribution of gas flow field in the goaf is related to the location of the drilling layout. The gas concentration in the return air lane can be reduced more effectively. The high concentration gas can form the inert area in the deep part. The deep ground well can extract the high concentration gas released by the protected layer, but it is easier to transfer the oxygen to the depth of the goaf, especially in the large flow extraction, which makes the deep oxygen content increase sharply. (2) the well and lower solid extraction is easy to make goaf. The inner air leakage channel interconnects each other, and the nitrogen injection in the goaf can inert the inlet and deep regions well. Under the same nitrogen injection flow, the deep injection of nitrogen in the goaf is more effective to inert the whole stope more effectively than the shallow nitrogen injection, but the air leakage is strongly caused by the leakage of air, and there is a high oxidation temperature zone. (3) joint drilling extraction can be used in mining. The relatively uniform distribution of the low pressure area in the empty area can reasonably distribute the pumping capacity in the large goaf. While the extraction concentration is guaranteed, the range of the oxygen rich zone in the goaf will not be greatly expanded. (4) when the gas emission of the mine is less than 40m3/min, it is good to adopt the underground gas extraction. In order to control the problem of gas exceeding the limit, the gas emission is more than 40m3/min, so it is necessary to take the comprehensive extraction measures on the upper and lower sides of the mine to effectively control the problem of gas overlimit. The practice of the upper and lower solid extraction engineering of the pressure relief gas well in the protective layer of the Huainan Ding Ji mining area shows that the gas extraction flow changes with the evolution of the mining fracture caused by the advance of the working face. The anti destructive ability of ground drilling has a great influence on gas efficiency and long-term extraction. In the case of successful drilling, high efficiency extraction can last more than 6 months. After the work face is collected, the gas discharge pressure and the accumulation of gas in the goaf can still be accumulated for more than 3 years. The average monthly pumping rate is 6.32~14.27m3/min, and the total extraction purity is 16635631m3. The monthly average extraction pure flow rate is 2.87~20.63m3/min for the high pumping and roof drilling in the 27.52%. working face of the total extraction. The cumulative total extraction purity is 30326880 m3, which accounts for the 50.16%. ground drilling of the total extraction, and the gas concentration in the underground high pumping and drilling holes is more than that of the drilling. It has a long time and does not affect the production of coal mine. It can effectively control the gas disaster of high gas coal seam. This paper has a certain reference and reference significance for the study of gas control in high gas mine and the prevention and control of spontaneous combustion under the process of gas extraction.
【學位授予單位】:中國礦業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD712.6;TD75
【參考文獻】
相關期刊論文 前10條
1 梁運濤;侯賢軍;羅海珠;田富超;于貴生;;我國煤礦火災防治現(xiàn)狀及發(fā)展對策[J];煤炭科學技術;2016年06期
2 周延;孟倩;李駿;林柏泉;徐聰;;采空區(qū)自燃帶數(shù)值模擬方法研究[J];中國礦業(yè)大學學報;2014年06期
3 劉建勝;王曉蕾;;2001—2013年我國煤礦瓦斯爆炸事故基本特征與發(fā)生規(guī)律探討[J];中州煤炭;2014年09期
4 王鳳雙;楊勝強;李珍寶;金雙林;孫家偉;;不同粒徑煤樣低溫氧化過程升溫速率規(guī)律研究[J];煤炭科學技術;2014年05期
5 梅福樹;戴廣龍;秦汝祥;周言安;陳梅勇;;潘一東礦Y型回采工作面采空區(qū)漏風檢測[J];礦業(yè)安全與環(huán)保;2014年02期
6 王鋒;原德勝;郭魏虎;何建華;史忠社;;高瓦斯易燃綜放面回撤期瓦斯治理和防滅火技術[J];煤炭科學技術;2014年03期
7 袁亮;薛俊華;張農(nóng);盧平;;煤層氣抽采和煤與瓦斯共采關鍵技術現(xiàn)狀與展望[J];煤炭科學技術;2013年09期
8 朱紅青;王海燕;沈靜;常明然;;氧濃度對松散煤耗氧速率影響的實驗研究[J];煤炭工程;2013年08期
9 Pan Rongkun;Cheng Yuanping;Yu Minggao;Lu Chang;Yang Ke;;New technological partition for “three zones” spontaneous coal combustion in goaf[J];International Journal of Mining Science and Technology;2013年04期
10 秦波濤;魯義;殷少舉;曹凱;王美光;;近距離煤層綜放面瓦斯與煤自燃復合災害防治技術研究[J];采礦與安全工程學報;2013年02期
相關博士學位論文 前10條
1 余陶;采空區(qū)瓦斯與煤自燃復合災害防治機理與技術研究[D];中國科學技術大學;2014年
2 高洋;煤礦開采引起的采空區(qū)瓦斯與煤自燃共生災害研究[D];中國礦業(yè)大學(北京);2014年
3 曹凱;綜放采空區(qū)遺煤自然發(fā)火規(guī)律及高效防治技術[D];中國礦業(yè)大學;2013年
4 宋萬新;含瓦斯風流對煤自燃氧化特性影響的理論及應用研究[D];中國礦業(yè)大學;2012年
5 陳曉坤;煤自燃多源信息融合預警研究[D];西安科技大學;2012年
6 吳仁倫;煤層群開采瓦斯卸壓抽采“三帶”范圍的理論研究[D];中國礦業(yè)大學;2011年
7 邵昊;高瓦斯易自燃采空區(qū)雙層遺煤均壓通風系統(tǒng)研究[D];中國礦業(yè)大學;2011年
8 羅文柯;上覆巨厚火成巖下煤與瓦斯突出災害危險性評估與防治對策研究[D];中南大學;2010年
9 翟成;近距離煤層群采動裂隙場與瓦斯流動場耦合規(guī)律及防治技術研究[D];中國礦業(yè)大學;2008年
10 李宗翔;高瓦斯易自燃采空區(qū)瓦斯與自燃耦合研究[D];遼寧工程技術大學;2007年
相關碩士學位論文 前6條
1 路潔心;遠距離下保護層采動卸壓及地面井失穩(wěn)變形研究[D];中國礦業(yè)大學;2015年
2 王少鋒;地下煤火空間特性及治理過程管理方法研究[D];中國礦業(yè)大學;2014年
3 張東坡;易自燃特厚煤層綜放面采空區(qū)注氮防滅火技術研究與應用[D];太原理工大學;2010年
4 黃波;鶴壁六礦深部(未采區(qū))瓦斯涌出量及突出危險性預測研究[D];河南理工大學;2009年
5 李守國;采空區(qū)瓦斯分布及運移規(guī)律研究[D];煤炭科學研究總院;2009年
6 毛占利;高瓦斯煤層自燃火災防治技術研究[D];西安科技大學;2006年
,本文編號:1775648
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1775648.html