煤礦安全診斷專(zhuān)家知識(shí)庫(kù)研究與實(shí)現(xiàn)
本文選題:煤礦安全 + 知識(shí)庫(kù); 參考:《中國(guó)礦業(yè)大學(xué)》2015年碩士論文
【摘要】:近年來(lái)我國(guó)煤礦信息化建設(shè)取得了顯著成果,包括井下工業(yè)控制網(wǎng)、企業(yè)局域網(wǎng)、煤礦綜合自動(dòng)化系統(tǒng)、安全生產(chǎn)監(jiān)測(cè)聯(lián)網(wǎng)系統(tǒng)、煤礦安全避險(xiǎn)“六大系統(tǒng)”以及面向各生產(chǎn)管理部門(mén)的管理信息系統(tǒng)建設(shè)等。這諸多的信息系統(tǒng)源源不斷地產(chǎn)生海量的數(shù)據(jù),這些數(shù)據(jù)通常只是在報(bào)表或者大屏上顯示一下便完成使命,大數(shù)據(jù)背后蘊(yùn)含的模式、規(guī)律等知識(shí)無(wú)法感知,因而對(duì)煤礦安全狀況也就缺乏本質(zhì)上地概括和提升。數(shù)據(jù)海量積累而知識(shí)相對(duì)匱乏,目前逐漸成為煤礦信息化建設(shè)的重要議題,也是本文研究煤礦安全診斷專(zhuān)家知識(shí)庫(kù)的目標(biāo)所在。煤礦安全診斷專(zhuān)家知識(shí)庫(kù),是將煤礦安全相關(guān)的規(guī)范規(guī)程體系中涉及的知識(shí)以確定的知識(shí)表示形式高效地組織和存儲(chǔ)起來(lái),并提供高效方便的訪問(wèn)、檢索、推理手段,是實(shí)現(xiàn)煤礦安全動(dòng)態(tài)診斷的基礎(chǔ)。通過(guò)日常業(yè)務(wù)系統(tǒng)收集的事務(wù)性數(shù)據(jù)以及監(jiān)測(cè)監(jiān)控系統(tǒng)上傳的實(shí)時(shí)性數(shù)據(jù),煤礦安全動(dòng)態(tài)診斷系統(tǒng)根據(jù)知識(shí)庫(kù)的診斷模型對(duì)煤礦生產(chǎn)狀態(tài)進(jìn)行分析計(jì)算,評(píng)估概括煤礦安全狀況并診斷出存在的問(wèn)題,根據(jù)問(wèn)題進(jìn)行檢索、匹配、推理,提出建議措施。本文系統(tǒng)性的理清了煤礦安全生產(chǎn)活動(dòng)及參與活動(dòng)的人機(jī)環(huán)管對(duì)象,梳理每一類(lèi)對(duì)象與安全生產(chǎn)相關(guān)的屬性和信息,分層分級(jí)研究并建立了各類(lèi)對(duì)象對(duì)安全生產(chǎn)影響和風(fēng)險(xiǎn)的量化指標(biāo)和診斷模型,初步建立了指標(biāo)體系和診斷模型庫(kù)。根據(jù)煤礦安全生產(chǎn)的量化指標(biāo)體系和診斷模型,以及煤礦安全生產(chǎn)的各類(lèi)規(guī)程規(guī)范體系標(biāo)準(zhǔn),建立了煤礦安全診斷專(zhuān)家知識(shí)庫(kù)。實(shí)現(xiàn)了基本的安全知識(shí)規(guī)則的分詞檢索、模糊匹配、推理推斷。軟件系統(tǒng)實(shí)現(xiàn)基于.NET框架,采用三層模式的應(yīng)用程序開(kāi)發(fā)架構(gòu),利用關(guān)系型數(shù)據(jù)庫(kù)SQL Server 2008和面向?qū)ο笳Z(yǔ)言C#來(lái)開(kāi)發(fā)煤礦安全專(zhuān)家系統(tǒng)的知識(shí)庫(kù)和推理機(jī)。系統(tǒng)診斷對(duì)象綜合數(shù)據(jù)源來(lái)自綜合管理系統(tǒng)的信息采集,知識(shí)庫(kù)的內(nèi)容參考煤礦安全規(guī)程,綜合三違標(biāo)準(zhǔn),隱患標(biāo)準(zhǔn),設(shè)備及操作規(guī)程等,診斷算法與診斷模型采用面向?qū)ο笠约澳K化的設(shè)計(jì)思想進(jìn)行封裝。診斷系統(tǒng)根據(jù)診斷對(duì)象數(shù)據(jù),結(jié)合評(píng)估模型對(duì)煤礦的整體安全狀況進(jìn)行評(píng)估診斷,并對(duì)診斷結(jié)果生成處理建議。目前,煤礦安全動(dòng)態(tài)診斷系統(tǒng)與專(zhuān)家知識(shí)庫(kù)已經(jīng)投入使用,并有效的降低了礦井安全事故的發(fā)生率,對(duì)改善煤礦生產(chǎn)環(huán)境起到了積極促進(jìn)的作用。
[Abstract]:In recent years, remarkable achievements have been made in the construction of coal mine informatization in China, including underground industrial control network, enterprise local area network, coal mine integrated automation system, safety production monitoring network system, etc.The six systems of coal mine safety and risk avoidance and the construction of management information system for each production management department.These many information systems are constantly generating massive amounts of data. These data are usually just displayed on a report or a large screen to complete the mission. The patterns and rules behind big data are inperceptible.Therefore the coal mine safety condition also lacks the essential summary and the promotion.The mass accumulation of data and the relative lack of knowledge are becoming an important topic in the construction of information technology in coal mines, which is also the goal of this paper to study the knowledge base of coal mine safety diagnosis experts.The expert knowledge base of coal mine safety diagnosis is to efficiently organize and store the knowledge involved in the system of coal mine safety related norms and regulations, and to provide efficient and convenient access, retrieval and reasoning.It is the foundation of dynamic diagnosis of coal mine safety.Through the routine data collected by daily business system and real-time data uploaded by monitoring and monitoring system, the coal mine safety dynamic diagnosis system analyzes and calculates the coal mine production status according to the diagnostic model of knowledge base.To evaluate and summarize the coal mine safety situation and diagnose the existing problems, search, match, infer, and put forward some suggestions according to the problems.This paper systematically clarifies the coal mine safety production activities and the man-machine environmental management objects that participate in the activities, combing the attributes and information of each kind of objects related to the safety production.The quantitative indexes and diagnostic models of the effects and risks of various objects on production safety were studied and established, and the index system and diagnostic model library were preliminarily established.According to the quantitative index system and diagnostic model of coal mine safety production, as well as the standards of all kinds of rules and regulations of coal mine safety production, the expert knowledge base of coal mine safety diagnosis is established.The basic security knowledge rules of participle retrieval, fuzzy matching, inference and inference are implemented.The software system is based on .NET framework, adopts the application development framework of three-tier mode, and uses relational database SQL Server 2008 and object-oriented language C # to develop the knowledge base and inference engine of coal mine safety expert system.The comprehensive data source of the system diagnosis object comes from the information collection of the integrated management system, the contents of the knowledge base refer to the coal mine safety rules, the comprehensive three violations standard, the hidden trouble standard, the equipment and the operation rules, etc.The diagnosis algorithm and diagnostic model are encapsulated by object-oriented and modular design ideas.According to the data of the diagnosis object and the evaluation model, the system evaluates and diagnoses the whole safety condition of coal mine, and generates some processing suggestions for the diagnosis result.At present, the coal mine safety dynamic diagnosis system and expert knowledge base have been put into use, and effectively reduce the incidence of mine safety accidents, to improve the coal mine production environment has played an active role in promoting.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TD76;TP182
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 周波;唐桂彬;孫茂存;;基于面向?qū)ο蟮耐咚拱踩A(yù)警專(zhuān)家系統(tǒng)研究[J];地理信息世界;2013年04期
2 黃大榮;胡必錦;;基于專(zhuān)家知識(shí)庫(kù)屬性重要度的故障診斷方法研究[J];計(jì)算機(jī)仿真;2007年04期
3 劉劍;陳一超;江虹;;基于規(guī)則的通用專(zhuān)家知識(shí)庫(kù)故障診斷方法[J];計(jì)算機(jī)與數(shù)字工程;2010年06期
4 劉小生;孫群;;基于關(guān)系數(shù)據(jù)庫(kù)的礦山安全預(yù)警專(zhuān)家系統(tǒng)知識(shí)庫(kù)的建立[J];煤礦安全;2009年03期
5 王培強(qiáng);王占峰;楊龍杰;;淺談專(zhuān)家系統(tǒng)在采礦行業(yè)的應(yīng)用現(xiàn)狀及發(fā)展前景[J];煤礦現(xiàn)代化;2010年06期
6 鹿文鵬;黃河燕;;基于依存適配度的知識(shí)自動(dòng)獲取詞義消歧方法[J];軟件學(xué)報(bào);2013年10期
相關(guān)碩士學(xué)位論文 前1條
1 孫群;礦山安全預(yù)警專(zhuān)家系統(tǒng)知識(shí)庫(kù)的研究[D];江西理工大學(xué);2008年
,本文編號(hào):1764743
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1764743.html