采煤工作面分區(qū)域冷負(fù)荷計(jì)算及噴霧降溫技術(shù)研究
本文選題:采煤工作面 切入點(diǎn):熱害 出處:《中國(guó)礦業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:按照可再生能源發(fā)展的情況預(yù)測(cè),在低碳和強(qiáng)化低碳情景下,煤炭消費(fèi)比重雖有所下降,但未來幾十年內(nèi)仍然在我國(guó)能源結(jié)構(gòu)中占據(jù)重要地位。目前,煤礦的開采深度在不斷增加,熱害礦井?dāng)?shù)量也在不斷增多,熱害將制約煤炭行業(yè)的發(fā)展。在高溫礦井熱害治理中,采煤工作面降溫冷負(fù)荷的確定是高溫礦井熱害治理的基礎(chǔ),決定了高溫礦井降溫效果,合理準(zhǔn)確的計(jì)算礦井采煤工作面冷負(fù)荷以及探討有效地礦井降溫技術(shù)是熱害治理的關(guān)鍵因素。目前,礦井冷負(fù)荷的計(jì)算方法,都未能達(dá)到較為準(zhǔn)確地計(jì)算采煤工作面實(shí)際冷負(fù)荷,很難滿足井下降溫需要,計(jì)算結(jié)果小于實(shí)際值。而且礦井降溫一般均采用冷卻風(fēng)流降溫,則存在空氣載冷量不足等問題。本文圍繞采煤工作面圍巖的傳熱特性,以流體熱力學(xué)、傳熱傳質(zhì)理論以及CFD數(shù)值模擬等手段,研究礦井冷負(fù)荷計(jì)算理論、采煤工作面非線性風(fēng)溫預(yù)測(cè)理論,建立了采煤工作面的分區(qū)域冷負(fù)荷計(jì)算法,并對(duì)采煤工作面噴霧降溫技術(shù)進(jìn)行探討。論文研究的主要內(nèi)容:(1)分析井下風(fēng)流與圍巖煤壁的熱濕交換特性,并結(jié)合常用的線性風(fēng)溫預(yù)測(cè)方法,對(duì)礦井冷負(fù)荷的計(jì)算方法進(jìn)行研究,分析礦井熱害治理效果不佳的影響因素。研究得出采用風(fēng)流溫度均值化、線性化計(jì)算的圍巖傳熱量小于采用非線性風(fēng)溫變化計(jì)算的結(jié)果,而且在目前所采用的冷負(fù)荷計(jì)算方法中冷負(fù)荷計(jì)算值均小于礦井采煤工作面的實(shí)際冷負(fù)荷。(2)分析由非線性風(fēng)溫計(jì)算公式預(yù)測(cè)采煤工作面風(fēng)溫值,研究建立將風(fēng)流溫度小于30℃的長(zhǎng)度范圍(35)x作為降溫的有效區(qū)域,對(duì)采煤工作面分區(qū)域劃分,建立分區(qū)域計(jì)算采煤工作面冷負(fù)荷的方法,計(jì)算礦井冷負(fù)荷及冷風(fēng)最大載冷能力,分析采煤工作面風(fēng)流入口風(fēng)溫、圍巖溫度、風(fēng)流速度對(duì)采煤工作面分區(qū)域冷負(fù)荷的影響,分析得到:①目前采用的冷負(fù)荷計(jì)算法得到的冷負(fù)荷遠(yuǎn)小于分區(qū)域冷負(fù)荷計(jì)算值,其主要原因是圍巖傳熱量采用的計(jì)算方法不同。另外,礦井降溫采用冷風(fēng)流的最大載冷量小于礦井降溫實(shí)際冷負(fù)荷值,在熱害較嚴(yán)重的礦井,冷風(fēng)載冷量?jī)H能滿足采煤工作面入口的局部區(qū)域,為有效降溫區(qū)域。②冷風(fēng)流在采煤工作面入口的風(fēng)溫在19℃~25℃時(shí),采煤工作面冷負(fù)荷基本不變,即冷風(fēng)入口風(fēng)溫對(duì)高溫礦井冷負(fù)荷影響較小;③對(duì)于圍巖溫度不同的礦井,圍巖溫度越高,采煤工作面冷負(fù)荷越大,其有效降溫區(qū)域的長(zhǎng)度與圍巖壁溫呈線性減小的關(guān)系;④在相同壁溫的礦井,采煤工作面冷負(fù)荷隨風(fēng)速的增加而增加,且近似呈線性關(guān)系,降溫區(qū)域長(zhǎng)度和風(fēng)速呈線性增加的關(guān)系;壁溫增加、風(fēng)速增加的情況下,有效降溫區(qū)域長(zhǎng)度增加幅度減小。(3)在數(shù)值模擬分析中,采用較低的流動(dòng)雷諾數(shù)分析礦井圍巖與風(fēng)流近壁面換熱特性,進(jìn)行湍流流動(dòng)近壁面的模型處理,進(jìn)行數(shù)值模擬計(jì)算采煤工作面區(qū)域冷負(fù)荷,并與理論計(jì)算的采煤工作面分區(qū)域冷負(fù)荷進(jìn)行對(duì)比分析,得到:①數(shù)值模擬和理論計(jì)算結(jié)果稍有差別,但整體結(jié)果較為貼合;②在采煤工作面入口后的一段距離內(nèi),圍巖傳熱對(duì)冷風(fēng)流核心區(qū)域溫度影響較小,符合實(shí)際熱交換熱情況,模擬分析得到:入口區(qū)域冷風(fēng)流溫度場(chǎng)與理論計(jì)算的差別。(4)研究采煤工作面降溫技術(shù),當(dāng)采用冷卻風(fēng)流降溫時(shí),由于《煤礦安全規(guī)程》對(duì)風(fēng)流風(fēng)速和風(fēng)溫的要求,使礦井風(fēng)流載冷量受到限制,只能解決一段區(qū)域內(nèi)的降溫要求,因此本課題研究提出分區(qū)域降溫的思路:利用噴水霧化供冷,分區(qū)域供給采煤工作面風(fēng)流冷量的降溫技術(shù),并對(duì)噴霧降溫技術(shù)進(jìn)行設(shè)計(jì)研究,探討噴霧降溫技術(shù)的特性及應(yīng)用。
[Abstract]:According to the prediction of the development of renewable energy, low carbon and enhanced low carbon scenario, the proportion of coal consumption has decreased, but still within the next few decades in China's energy structure occupies an important position. At present, the coal mining depth increasing, the heat harm mine in increasing the number, the heat damage will restrict the development of the coal industry. In the high temperature mine heat harm control in coal face cooling to determine the cooling load is the basis of governance in high temperature mine heat damage, determines the cooling effect of high temperature mine work, calculation of mine coal face reasonable cooling load and explore effective mine cooling technology is a key factor for heat harm treatment. At present and the calculation method of mine cooling load, have failed to achieve more accurate calculation of the actual cooling load of coal face, it is difficult to meet the needs of underground cooling. The calculation result is less than the actual value. And mine cooling general Use of cooling air cooling, there is the problem of air containing cold and other issues. In this paper, the heat transfer characteristics of surrounding rock around coal face, with fluid thermodynamics, heat transfer theory and CFD numerical simulation, theoretical calculation of mine cooling load prediction theory of coal face nonlinear wind temperature, established the calculation method of cooling load domain partition coal face and the coal face spray cooling technology is discussed. The main contents of this dissertation are: (1) analysis of the airflow and the surrounding rock of coal wall heat and moisture exchange characteristics, combined with the commonly used linear air temperature prediction method, studying the calculation method of mine cooling load, influencing factors and ineffective governance analysis mine heat. The results of the mean air temperature, the linear calculation of surrounding rock heat transfer is less than the nonlinear wind temperature calculation results, and used in the cold The cooling load calculation method of load calculation value was less than the actual mining working face of mine cooling load. (2) by the analysis of nonlinear wind temperature prediction of coal face wind temperature value, on the basis of the airflow temperature less than 30 DEG C length range (35) x as effective regional cooling, to face regional division methods, the establishment of sub regional coal face cooling load calculation, the calculation of the maximum load capacity of the mine cooling load and cold wind, analysis of coal face air entrance air temperature, the temperature of surrounding rock, analysis of effects of airflow velocity on the coal face regional cooling load: cold load method is far less than the regional cooling load calculation calculation of cooling load of currently used, the main reason is the different calculation methods of surrounding rock by heat transfer. In addition, mine cooling using cold air cooling capacity is less than the maximum load of mine temperature drop the actual cooling load value, In heat harmful mine seriously, wind load cooling capacity can only meet the local entrance of coal face, effective cooling area. The cold air at the entrance of the mining coal working surface air temperature at 19 DEG ~25 DEG, coal face cooling load is basically unchanged, namely the cold air entrance wind temperature has little effect on the high temperature mine well, for mine cooling load; the temperature of surrounding rock in different surrounding rock, the higher the temperature is, the greater the coalface cooling load, the effective cooling area and the length of the rock wall temperature decreases linearly; the mine in the same wall temperature, increase the cooling load of coal face with wind speed increasing, and approximately linear relationship between linearly increase the cooling area length and wind speed; the wall temperature increases, the wind speed increased, the effective cooling area length decrease increase. (3) in the analysis of numerical simulation, the flow of the lower Reynolds number of mine rock and wind The flow near the wall of the heat transfer characteristics of turbulent flow near the wall model, numerical simulation of regional coal face cooling load, coal face and theoretical calculation of regional cooling load were analyzed by the numerical simulation and theoretical calculation results slightly, but the overall results are close to each other; II. At the entrance of coal working face after a certain distance, the rock heat transfer of cold airflow affected core region temperature, heat exchange heat in line with the actual situation, simulation analysis: Calculation of cold airflow temperature field and the theory of entrance difference. (4) cooling technology of coal face, when the cooling air cooling, because "coal Mine Safety Regulations > requirements on the airflow temperature and velocity, the mine air containing cold quantity is limited, can only solve the area of the cooling requirements, so this research put forward the idea of regional cooling: The spray cooling technology is applied to provide the cooling technology of the airflow cooling capacity of the coal face, and the spray cooling technology is designed and researched, and the characteristics and application of the spray cooling technology are discussed.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD727.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳立立;郭正;;不同湍流模型在低雷諾數(shù)流動(dòng)中的應(yīng)用研究[J];現(xiàn)代應(yīng)用物理;2016年03期
2 亓玉棟;程衛(wèi)民;于巖斌;潘剛;;高溫礦井低品位余熱綜合利用技術(shù)研究[J];中國(guó)礦業(yè);2015年02期
3 劉何清;楊威;何昌富;熊慧靈;李伊潔;;礦井潮濕巷道風(fēng)流溫度預(yù)測(cè)方法改進(jìn)[J];安全與環(huán)境學(xué)報(bào);2014年06期
4 陳柳;;溫濕度獨(dú)立控制系統(tǒng)應(yīng)用于深井降溫[J];金屬礦山;2014年10期
5 袁巧玲;計(jì)時(shí)鳴;文東輝;譚大鵬;張利;;基于改進(jìn)的低雷諾數(shù)湍流模型的軟性磨粒流加工仿真與實(shí)驗(yàn)[J];中國(guó)機(jī)械工程;2014年06期
6 姬建虎;;熱害礦井風(fēng)流濕熱過程分析[J];煤礦安全;2014年01期
7 盛偉;鄭海坤;;人體降溫服在礦井熱環(huán)境中的應(yīng)用綜述[J];中國(guó)安全生產(chǎn)科學(xué)技術(shù);2013年12期
8 楊威;劉何清;何昌富;劉陽(yáng)陽(yáng);;巷道圍巖不穩(wěn)定換熱系數(shù)變化規(guī)律分析[J];礦業(yè)工程研究;2013年04期
9 李躍通;陳延可;張發(fā)亮;;井巷圍巖與風(fēng)流熱濕交換影響因素分析[J];金屬礦山;2013年01期
10 郭平業(yè);朱艷艷;;深井降溫冷負(fù)荷反分析計(jì)算方法[J];采礦與安全工程學(xué)報(bào);2011年03期
相關(guān)博士學(xué)位論文 前4條
1 姬建虎;掘進(jìn)工作面?zhèn)鳠崽匦约盁岷χ卫硌芯縖D];重慶大學(xué);2014年
2 張?jiān)?高地溫巷道圍巖非穩(wěn)態(tài)溫度場(chǎng)及隔熱降溫機(jī)理研究[D];中國(guó)礦業(yè)大學(xué);2013年
3 王義江;深部熱環(huán)境圍巖及風(fēng)流傳熱傳質(zhì)研究[D];中國(guó)礦業(yè)大學(xué);2010年
4 劉冠男;高溫采煤工作面熱害機(jī)制及風(fēng)流特性的熱—流理論研究與數(shù)值模擬[D];中國(guó)礦業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 何昌富;礦井巷道圍巖不穩(wěn)定傳熱系數(shù)研究與應(yīng)用[D];湖南科技大學(xué);2014年
2 蘇昭桂;巷道圍巖與風(fēng)流熱交換量的反演算法及其應(yīng)用[D];山東科技大學(xué);2004年
,本文編號(hào):1651952
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1651952.html