許疃礦主采煤層殘余瓦斯重分布的地質(zhì)控因研究
本文選題:許疃礦 切入點:煤儲層物性 出處:《中國礦業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本文以許疃煤礦為研究區(qū),總結(jié)分析了許疃礦構(gòu)造發(fā)育特征以及瓦斯賦存特征;并以3_2煤層為主要研究對象,通過對研究區(qū)煤巖進行壓汞、等溫吸附、光學(xué)顯微鏡觀測和滲透率實驗,探討了研究區(qū)的煤儲層物性特征和滲透性發(fā)育特征;對3_2煤層瓦斯賦存特征進行分析以及探討各類地質(zhì)條件對原位瓦斯賦存的影響;通過對33采區(qū)中3_2煤層抽采后的殘余瓦斯進行歸納總結(jié),得出殘余瓦斯重分布特征,探討了殘余瓦斯重分布的控制因素。分析認為研究區(qū)孔徑結(jié)構(gòu)以微孔為主,過渡孔次之,中孔和大孔發(fā)育較差;由于構(gòu)造煤較為發(fā)育,使得研究區(qū)煤體孔徑結(jié)構(gòu)和孔隙形態(tài)差異較大;煤巖裂隙密度平均為344條/cm~2,長度和寬度平均為2173μm和27.3μm,裂隙被填充的裂隙僅占6.3%;研究區(qū)煤巖吸附體積平均為9.9306 cm~3/g,吸附壓力平均為1.404MPa;研究區(qū)煤巖滲透率與有效應(yīng)力呈負指數(shù)相關(guān),與瓦斯壓力呈正相關(guān)。根據(jù)對原煤瓦斯賦存條件進行分析,煤層埋深為原煤瓦斯賦存主要控制因素。對研究區(qū)進行構(gòu)造定量綜合評價,構(gòu)造綜合復(fù)雜指數(shù)值最大值集中在F5斷層周圍,且F5斷層周圍原煤瓦斯含量降低;研究區(qū)頂?shù)装鍘r性基本全區(qū)為透氣性差的泥巖,有利于原煤瓦斯的賦存;瓦斯含量與煤層厚度具有較好的相關(guān)性。研究表明,研究區(qū)殘余瓦斯重分布特征受到構(gòu)造,煤層埋深和煤厚等地質(zhì)條件控制。研究區(qū)斷層較為發(fā)育,以小斷層最為發(fā)育,殘余瓦斯含量受到構(gòu)造的影響,主要是小斷層發(fā)育有利于殘余瓦斯的賦存;煤層埋深越深,抽采前后瓦斯含量差值越大,能夠有效的降低殘余瓦斯含量;煤厚越厚,瓦斯含量差值越大;井下活動區(qū)域以及巷道附近殘余瓦斯含量和殘余瓦斯壓力低,不利于殘余瓦斯的賦存。抽采前后對瓦斯成分有影響,抽采后瓦斯成分中CO_2比例降低,N_2比例增高。
[Abstract]:Taking Xutuan Coal Mine as the research area, this paper summarizes and analyzes the structural development characteristics and gas occurrence characteristics of Xutuan Coal Mine, and takes 3s _ 2 coal seam as the main research object, through mercury injection, isothermal adsorption of coal and rock in the study area. The physical and permeability characteristics of coal reservoir in the study area are discussed by optical microscope observation and permeability experiment, and the gas occurrence characteristics of coal seam 3s _ 2 are analyzed, and the influence of various geological conditions on in-situ gas storage is discussed. Based on the summary of residual gas after mining in coal seam 3# 2 in 33 mining area, the characteristics of residual gas redistribution are obtained, and the controlling factors of residual gas redistribution are discussed. It is considered that the pore size structure in the study area is dominated by microholes, followed by transition holes. The development of mesopore and macropore is poor, because of the development of tectonic coal, the pore size structure and pore morphology of coal body in the study area are quite different. The average density of coal and rock fissures is 344 / cm ~ (-2), the average length and width are 2173 渭 m and 27.3 渭 m, and only 6.3% of the fractures are filled, the average adsorption volume of coal and rock is 9.9306 cm ~ (3) / g and the average adsorption pressure is 1.404 MPA / g. The permeability of coal and rock in the study area is negatively correlated with effective stress. According to the analysis of the condition of gas storage in raw coal, the coal seam burial depth is the main controlling factor of gas occurrence in raw coal, and the structural quantitative comprehensive evaluation is carried out in the study area. The maximum value of structural complex index is concentrated around F5 fault, and the gas content of raw coal decreases around F5 fault, and the basic area of lithology of top and bottom plate is mudstone with poor gas permeability, which is beneficial to the occurrence of raw coal gas. The study shows that the distribution of residual gas in the study area is controlled by structure, coal seam depth and coal thickness. The fault is relatively developed in the study area, and the small fault is the most developed. The content of residual gas is affected by structure, mainly because the development of small fault is favorable to the occurrence of residual gas, the deeper the coal bed is, the greater the difference of gas content is before and after drainage, which can effectively reduce the residual gas content, and the thicker the coal thickness, the more thick the residual gas content is. The greater the difference of gas content is, the lower the residual gas content and residual gas pressure are in the underground active area and near the roadway, which are not conducive to the occurrence of residual gas. The proportion of CO_2 in gas components decreased after drainage.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD712
【參考文獻】
相關(guān)期刊論文 前10條
1 孫家廣;趙賢正;桑樹勛;劉世奇;楊延輝;;基于光學(xué)顯微觀測的煤層裂隙發(fā)育特征、成因及其意義——以沁水盆地南部3~#煤層為例[J];斷塊油氣田;2016年06期
2 馬曙;康付如;韓真理;周炳秋;;煤層預(yù)抽后殘余瓦斯含量分布動態(tài)預(yù)測方法[J];煤炭科學(xué)技術(shù);2016年02期
3 岳高偉;袁軍偉;郝明通;;軟、硬煤層殘余瓦斯含量區(qū)域效果檢驗臨界值研究[J];中國安全生產(chǎn)科學(xué)技術(shù);2015年08期
4 陳立偉;楊天鴻;楊宏民;張書金;;軟、硬煤殘余瓦斯含量差異性研究[J];東北大學(xué)學(xué)報(自然科學(xué)版);2015年07期
5 孫曉軍;;直接法測定煤層殘余瓦斯壓力的實踐應(yīng)用[J];能源技術(shù)與管理;2015年02期
6 冀超輝;;汝箕溝煤礦殘余瓦斯含量區(qū)域效果檢驗臨界值研究[J];河南理工大學(xué)學(xué)報(自然科學(xué)版);2014年06期
7 王衛(wèi)軍;袁越;余偉健;陳旭;;采動影響下底板暗斜井的破壞機理及其控制[J];煤炭學(xué)報;2014年08期
8 于寶海;王建偉;許占營;;工作面殘余瓦斯參數(shù)快速測定方法及裝置[J];煤礦安全;2013年12期
9 張英;郝富昌;劉成軍;劉文杰;;考慮煤的塑性軟化和擴容特性的鉆孔卸壓范圍[J];遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版);2013年12期
10 田智威;譚云亮;劉兆霞;;含裂隙煤體瓦斯?jié)B流規(guī)律的LBM數(shù)值模擬[J];煤炭學(xué)報;2013年08期
相關(guān)博士學(xué)位論文 前5條
1 李文璞;采動影響下煤巖力學(xué)特性及瓦斯運移規(guī)律研究[D];重慶大學(xué);2014年
2 李明;構(gòu)造煤結(jié)構(gòu)演化及成因機制[D];中國礦業(yè)大學(xué);2013年
3 屈爭輝;構(gòu)造煤結(jié)構(gòu)及其對瓦斯特性的控制機理研究[D];中國礦業(yè)大學(xué);2010年
4 李志華;采動影響下斷層滑移誘發(fā)煤巖沖擊機理研究[D];中國礦業(yè)大學(xué);2009年
5 孫海濤;采動影響下地面鉆井的變形破壞機理研究[D];重慶大學(xué);2008年
相關(guān)碩士學(xué)位論文 前7條
1 趙耀;淮北礦區(qū)許疃礦礦井構(gòu)造評價及煤與瓦斯突出預(yù)測[D];中國礦業(yè)大學(xué);2016年
2 史南南;陽泉新景煤礦褶皺構(gòu)造發(fā)育規(guī)律及其對瓦斯賦存的控制[D];中國礦業(yè)大學(xué);2016年
3 張書金;預(yù)抽條件下軟、硬煤殘余瓦斯含量差異性研究[D];河南理工大學(xué);2011年
4 韓劍;平煤十三礦煤與瓦斯賦存規(guī)律與構(gòu)造控制作用研究[D];河南理工大學(xué);2011年
5 王棟;王莊煤礦及后備區(qū)瓦斯地質(zhì)規(guī)律與瓦斯預(yù)測[D];河南理工大學(xué);2011年
6 熊建龍;宣東二礦巖漿侵入對瓦斯賦存的影響[D];河南理工大學(xué);2009年
7 黃凱;煤層圍巖特征對瓦斯賦存與涌出的控制作用[D];安徽理工大學(xué);2008年
,本文編號:1595634
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1595634.html