基于故障的系統(tǒng)安全風(fēng)險(xiǎn)分析與評(píng)估方法研究
發(fā)布時(shí)間:2018-03-08 16:19
本文選題:安全風(fēng)險(xiǎn) 切入點(diǎn):系統(tǒng)安全性 出處:《國(guó)防科學(xué)技術(shù)大學(xué)》2013年博士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著科學(xué)技術(shù)的發(fā)展,系統(tǒng)結(jié)構(gòu)越來(lái)越復(fù)雜,功能越來(lái)越強(qiáng)大,性能不斷提升,同時(shí)對(duì)其安全性的要求也越來(lái)越高。然而,傳統(tǒng)的安全風(fēng)險(xiǎn)評(píng)估方法并不能準(zhǔn)確全面地評(píng)估出現(xiàn)代系統(tǒng)的安全風(fēng)險(xiǎn),掌握風(fēng)險(xiǎn)狀況,指導(dǎo)人們找出系統(tǒng)的薄弱環(huán)節(jié),提出科學(xué)的控制措施,安全風(fēng)險(xiǎn)評(píng)估的理論與方法亟待完善。為此,論文提出了一套系統(tǒng)安全風(fēng)險(xiǎn)分析與評(píng)估方法,研究了系統(tǒng)風(fēng)險(xiǎn)的概念與度量方法,討論了系統(tǒng)安全風(fēng)險(xiǎn)狀態(tài)評(píng)估技術(shù),分析了部件失效對(duì)系統(tǒng)安全風(fēng)險(xiǎn)的影響,給出了安全風(fēng)險(xiǎn)的不確定性評(píng)估方法。主要內(nèi)容包括:(1)系統(tǒng)風(fēng)險(xiǎn)的概念與度量方法評(píng)估系統(tǒng)安全風(fēng)險(xiǎn)的首要任務(wù)是掌握系統(tǒng)風(fēng)險(xiǎn)的概念與度量方法,該部分研究了部件失效與安全風(fēng)險(xiǎn)的關(guān)系,始于部件失效的風(fēng)險(xiǎn)傳播,靜態(tài)與動(dòng)態(tài)的風(fēng)險(xiǎn)度量方法,最后在上述研究的基礎(chǔ)上提出了系統(tǒng)風(fēng)險(xiǎn)評(píng)估的框架及內(nèi)容。(2)系統(tǒng)安全風(fēng)險(xiǎn)狀態(tài)的評(píng)估方法該部分從系統(tǒng)狀態(tài)的描述出發(fā),首先給出了系統(tǒng)風(fēng)險(xiǎn)狀態(tài)的劃分,針對(duì)系統(tǒng)的不同特征,詳細(xì)討論了二態(tài)、多態(tài)和過(guò)程控制系統(tǒng)風(fēng)險(xiǎn)狀態(tài)的劃分。其次,給出了系統(tǒng)風(fēng)險(xiǎn)概率、置信區(qū)間和高風(fēng)險(xiǎn)狀態(tài)不可接受概率的計(jì)算方法。隨后,就系統(tǒng)到達(dá)高風(fēng)險(xiǎn)狀態(tài)的時(shí)間展開(kāi)了探索研究,建立了高風(fēng)險(xiǎn)狀態(tài)到達(dá)時(shí)間的評(píng)估方法,通過(guò)該法能估算出高風(fēng)險(xiǎn)狀態(tài)到達(dá)不可接受程度的時(shí)間和系統(tǒng)轉(zhuǎn)移到高風(fēng)險(xiǎn)狀態(tài)的時(shí)間。(3)部件失效對(duì)系統(tǒng)安全風(fēng)險(xiǎn)影響的分析方法研究部件對(duì)系統(tǒng)安全風(fēng)險(xiǎn)的影響可以指導(dǎo)識(shí)別薄弱環(huán)節(jié),控制系統(tǒng)風(fēng)險(xiǎn),是安全風(fēng)險(xiǎn)評(píng)估的重要工作。該部分內(nèi)容主要包含部件風(fēng)險(xiǎn)重要度的分析、風(fēng)險(xiǎn)臨界狀態(tài)及關(guān)鍵部件識(shí)別、診斷分析,針對(duì)這些問(wèn)題分別討論了二態(tài)、多態(tài)和過(guò)程控制系統(tǒng)中部件失效對(duì)系統(tǒng)安全風(fēng)險(xiǎn)的影響。(4)安全風(fēng)險(xiǎn)的不確定性評(píng)估方法考慮到系統(tǒng)的高安全性要求及不確定性的影響,研究了不確定性的概率量化方法,并將影響系統(tǒng)安全風(fēng)險(xiǎn)評(píng)估結(jié)果的不確定性分為認(rèn)知不確定性和隨機(jī)不確定性,討論了包含不確定性時(shí)的安全風(fēng)險(xiǎn)裕度,結(jié)合系統(tǒng)處于高風(fēng)險(xiǎn)狀態(tài)概率和系統(tǒng)受到隨機(jī)沖擊的風(fēng)險(xiǎn)評(píng)估例子,應(yīng)用QMU方法,得到了系統(tǒng)安全風(fēng)險(xiǎn)評(píng)估的不確定結(jié)果,可用以輔助風(fēng)險(xiǎn)決策。應(yīng)用論文提出的系統(tǒng)安全風(fēng)險(xiǎn)分析與評(píng)估方法,針對(duì)不同特征系統(tǒng),既可得到更加準(zhǔn)確全面的系統(tǒng)風(fēng)險(xiǎn)狀態(tài)信息,又可從安全風(fēng)險(xiǎn)的角度獲取部件失效對(duì)系統(tǒng)的影響,還能充分考慮評(píng)估結(jié)果的不確定性,用以支持風(fēng)險(xiǎn)決策和控制,具有較高的理論參考和推廣應(yīng)用價(jià)值。
[Abstract]:With the development of science and technology, the system structure is becoming more and more complex, the function is becoming more and more powerful, the performance is improving constantly, at the same time, the requirement of its security is higher and higher. The traditional safety risk assessment method can not accurately and comprehensively evaluate the security risk of modern system, grasp the risk situation, guide people to find out the weak links of the system, and put forward scientific control measures. The theory and method of security risk assessment need to be improved urgently. Therefore, this paper puts forward a set of system security risk analysis and assessment method, studies the concept and measurement method of system risk, and discusses the technology of system security risk state assessment. The effect of component failure on system safety risk is analyzed. In this paper, the uncertainty assessment method of security risk is given. The main content includes the concept and measurement of system risk. The first task of evaluating system security risk is to master the concept and measure method of system risk. In this part, the relationship between component failure and safety risk is studied, which begins with the risk propagation of component failure, static and dynamic risk measurement. Finally, on the basis of the above research, the paper puts forward the framework and content of system risk assessment. The method of system security risk state evaluation is put forward. In this part, starting from the description of system state, the partition of system risk state is given. According to the different characteristics of the system, this paper discusses in detail the division of the risk states of two-state, polymorphic and process control systems. Secondly, the calculation methods of system risk probability, confidence interval and unacceptable probability of high risk state are given. In this paper, the time of reaching the high risk state of the system is studied, and the evaluation method of the arrival time of the high risk state is established. The method can estimate the time of reaching the unacceptable degree of high risk state and the time of system transition to high risk state. The method of analyzing the effect of component failure on system security risk study the influence of components on system security risk. Response can guide the identification of weak links, Controlling system risk is an important work of safety risk assessment. This part mainly includes the analysis of component risk importance, the critical state of risk and the identification of key components, diagnosis and analysis. In view of these problems, two states are discussed respectively. Effect of component failure on system safety risk in polymorphic and process control systems; uncertainty assessment method for security risk taking into account the high security requirements of the system and the influence of uncertainty, probabilistic quantification method of uncertainty is studied. The uncertainty that affects the result of system security risk assessment is divided into cognitive uncertainty and stochastic uncertainty, and the margin of security risk is discussed when uncertainty is included. The uncertain results of the system security risk assessment are obtained by using the QMU method combined with the examples of the probability of the system in high risk state and the risk assessment of the system subjected to random shocks. It can be used to assist risk decision. By using the system security risk analysis and evaluation method proposed in this paper, more accurate and comprehensive system risk state information can be obtained according to different characteristic systems. The influence of component failure on the system can also be obtained from the point of view of safety risk, and the uncertainty of evaluation results can be fully considered to support risk decision and control. It has high theoretical reference and application value.
【學(xué)位授予單位】:國(guó)防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:X913
【相似文獻(xiàn)】
相關(guān)重要報(bào)紙文章 前2條
1 黨國(guó)英;資本與勞動(dòng):誰(shuí)是老板?[N];證券時(shí)報(bào);2003年
2 馬仁貴 記者 陳建平 鄭文春;德宏州支隊(duì)確保執(zhí)勤目標(biāo)始終處于無(wú)風(fēng)險(xiǎn)狀態(tài)[N];人民武警;2004年
相關(guān)博士學(xué)位論文 前2條
1 厲海濤;基于風(fēng)險(xiǎn)狀態(tài)的安全性分析方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2012年
2 劉學(xué)敏;基于故障的系統(tǒng)安全風(fēng)險(xiǎn)分析與評(píng)估方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
,本文編號(hào):1584645
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1584645.html
最近更新
教材專(zhuān)著