綜放采場(chǎng)煤炭自燃三維數(shù)值模型構(gòu)建及應(yīng)用研究
本文選題:綜放采場(chǎng) 切入點(diǎn):煤炭自燃三維數(shù)值模型 出處:《遼寧工程技術(shù)大學(xué)》2013年博士論文 論文類型:學(xué)位論文
【摘要】:隨著綜放開采方法的廣泛應(yīng)用,綜放采場(chǎng)煤炭自燃已經(jīng)成為礦井的主要災(zāi)害之一,嚴(yán)重影響安全高效礦井的建設(shè)。數(shù)值模擬分析是對(duì)其進(jìn)行研究的主要方法之一因此,本文在對(duì)綜放采場(chǎng)煤炭自燃特性分析的基礎(chǔ)上,開展綜放采場(chǎng)煤炭自燃三維數(shù)值模型構(gòu)建的研究,并利用模型對(duì)綜放采場(chǎng)煤炭自燃規(guī)律及防治措施進(jìn)行研究。 基于遺煤厚度與冒落煤巖空隙率對(duì)綜放采空區(qū)煤炭自燃影響的重要性,采用理論分析方法對(duì)遺煤厚度、冒落煤巖空隙率進(jìn)行了研究,得到了依據(jù)頂板壓力與碎脹系數(shù)確定遺煤厚度及冒落煤巖空隙率的方法;并對(duì)受壓遺煤進(jìn)行了實(shí)驗(yàn)研究,得到了遺煤厚度對(duì)煤炭自燃的影響規(guī)律。 由于綜放采場(chǎng)極限平衡區(qū)頂煤也易發(fā)生自燃,應(yīng)用回歸分析方法、損傷力學(xué)理論及實(shí)驗(yàn)方法,對(duì)綜放采場(chǎng)極限平衡區(qū)寬度及頂煤滲透率進(jìn)行了研究,得到了極限平衡區(qū)寬度的確定方法及計(jì)算頂煤滲透率的經(jīng)驗(yàn)公式。 通過對(duì)綜放采場(chǎng)煤炭自燃的滲流場(chǎng)、濃度場(chǎng)、溫度場(chǎng)的特點(diǎn)分析,構(gòu)建了綜放采場(chǎng)煤炭自燃三維數(shù)值模型,并對(duì)具體條件下極限平衡區(qū)及采空區(qū)的煤炭自燃進(jìn)行了模擬,通過對(duì)現(xiàn)場(chǎng)觀測(cè)數(shù)據(jù)與數(shù)值模擬結(jié)果的對(duì)比分析,證明了所構(gòu)建綜放采場(chǎng)煤炭自燃三維模型的正確性及模擬結(jié)果的可靠性。 利用所建數(shù)值模型對(duì)綜放極限平衡區(qū)及采空區(qū)煤炭自燃規(guī)律進(jìn)行了分析,得到了工作面供風(fēng)量與頂煤升溫時(shí)間及高溫點(diǎn)位置、與采空區(qū)氧化帶高度及寬度、與采空區(qū)高溫點(diǎn)位置及遺煤升溫時(shí)間的關(guān)系;耗氧速度與自然發(fā)火期的關(guān)系;綜放采空區(qū)“三帶”劃分及溫度場(chǎng)分布的特點(diǎn)。 依據(jù)構(gòu)建數(shù)值模型對(duì)九道嶺礦E1S6綜放面采空區(qū)煤炭自燃特點(diǎn)進(jìn)行了分析,提出了具有針對(duì)性的注氮防治措施,并對(duì)其有效性進(jìn)行了數(shù)值模擬分析。分析結(jié)果表明,該措施能夠發(fā)揮采場(chǎng)煤炭自燃控制作用。最后,將防治措施在九道嶺礦進(jìn)行了實(shí)際應(yīng)用,并取得了較好的防治效果,證明了所構(gòu)建綜放采場(chǎng)煤炭自燃數(shù)值模型的實(shí)用性。
[Abstract]:With the wide application of fully mechanized caving mining method, spontaneous combustion of coal in fully mechanized caving stope has become one of the main disasters in coal mine, which seriously affects the construction of safe and efficient mine. Numerical simulation analysis is one of the main methods to study it. Based on the analysis of spontaneous combustion characteristics of coal in fully mechanized caving stope, this paper studies the construction of 3D numerical model of spontaneous combustion of coal in fully mechanized caving stope, and makes use of the model to study the law of spontaneous combustion of coal in fully mechanized caving stope and its prevention measures. Based on the importance of the influence of residual coal thickness and caving coal porosity on spontaneous combustion of coal in fully mechanized caving mining area, the thickness of residual coal and the porosity of caving coal are studied by theoretical analysis method. The method of determining the thickness of coal and the porosity of caving coal is obtained according to the roof pressure and the coefficient of dilatation, and the influence of the thickness of residual coal on the spontaneous combustion of coal is studied experimentally. Due to the spontaneous combustion of top coal in limit equilibrium area of fully mechanized caving stope, the width of limit equilibrium zone and the permeability of top coal in fully mechanized caving face are studied by means of regression analysis, damage mechanics theory and experimental method. The method for determining the width of the limit equilibrium zone and the empirical formula for calculating the permeability of top coal are obtained. By analyzing the characteristics of seepage field, concentration field and temperature field of coal spontaneous combustion in fully mechanized caving stope, a three-dimensional numerical model of coal spontaneous combustion in fully mechanized caving stope is constructed, and the coal spontaneous combustion in limit equilibrium area and goaf under specific conditions is simulated. Through the comparison and analysis of field observation data and numerical simulation results, it is proved that the 3D model of coal spontaneous combustion in fully mechanized caving stope is correct and reliable. By using the established numerical model, the coal spontaneous combustion law in the limit equilibrium zone and goaf of fully mechanized caving face is analyzed, and the air supply quantity in the face, the temperature rise time of the top coal and the position of the high temperature point, the height and width of the oxidation zone in the goaf are obtained. The relationship between oxygen consumption velocity and spontaneous combustion period, the division of "three zones" and the distribution of temperature field in fully mechanized caving caving area. Based on the construction of numerical model, the characteristics of coal spontaneous combustion in the goaf of E1S6 fully mechanized caving face of Jiudaoling Coal Mine are analyzed, and the corresponding measures of preventing and controlling nitrogen injection are put forward, and the effectiveness of these measures is analyzed numerically. The results show that, This measure can play a role in controlling spontaneous combustion of coal in stope. Finally, the control measures are applied in Jiudaoling Coal Mine, and good control effect is obtained, which proves the practicability of the numerical model of spontaneous combustion of coal in fully mechanized caving stope.
【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:TD752.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳吉南,馮學(xué)武,胡光偉;綜放工作面采空區(qū)區(qū)域劃分實(shí)用性分析[J];安全與環(huán)境學(xué)報(bào);2003年06期
2 文虎,徐精彩;煤自燃過程的動(dòng)態(tài)數(shù)學(xué)模型及數(shù)值分析[J];北京科技大學(xué)學(xué)報(bào);2003年05期
3 劉占魁;王燁;孫二偉;;綜采放頂煤合理放煤參數(shù)的確定[J];內(nèi)蒙古科技大學(xué)學(xué)報(bào);2010年01期
4 王省身,陳全;綜放采場(chǎng)自然發(fā)火規(guī)律研究[J];東北煤炭技術(shù);1995年05期
5 仵彥卿;巖體裂隙系統(tǒng)滲流場(chǎng)與應(yīng)力場(chǎng)耦合模型[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);1996年01期
6 蘭澤全;張國(guó)樞;馬漢鵬;;多漏風(fēng)采空區(qū)“三帶”分布模擬研究[J];礦業(yè)安全與環(huán)保;2008年04期
7 李尚國(guó);陸偉;梁林秀;;采空區(qū)氧化自燃帶寬度與工作面推進(jìn)速度關(guān)系的數(shù)值模擬[J];礦業(yè)安全與環(huán)保;2011年05期
8 陳全;采空區(qū)“三帶”劃分指標(biāo)的研究[J];煤炭工程師;1997年03期
9 賈德祥,吳穎;采場(chǎng)熱遷移規(guī)律的物理模擬實(shí)驗(yàn)[J];阜新礦業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);1990年01期
10 劉劍,黃伯軒;用三維滲流分析采場(chǎng)氣體流動(dòng)狀態(tài)[J];阜新礦業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);1991年03期
相關(guān)博士學(xué)位論文 前1條
1 陳清華;松散煤體熱物性測(cè)試及其溫度場(chǎng)分布規(guī)律研究[D];安徽理工大學(xué);2009年
,本文編號(hào):1563592
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1563592.html