基于多信息融合的電力火災(zāi)綜合探測技術(shù)研究
發(fā)布時間:2018-03-03 21:40
本文選題:電力 切入點:火災(zāi)探測 出處:《消防科學與技術(shù)》2017年02期 論文類型:期刊論文
【摘要】:設(shè)計了包含不同火災(zāi)特征參數(shù)傳感器的吸氣式火災(zāi)復合探測器。以多傳感器動態(tài)過程信息作為火災(zāi)判斷的數(shù)據(jù)基礎(chǔ),采用BP神經(jīng)網(wǎng)絡(luò)方法對多路探測信號進行融合處理。開發(fā)了電力火災(zāi)在線探測系統(tǒng),并應(yīng)用WebSocket技術(shù),將火災(zāi)探測及報警信息快速推送給用戶。實驗結(jié)果表明:電力火災(zāi)綜合探測系統(tǒng)無誤報漏報情況,大大提高了火災(zāi)判斷的準確率;馂(zāi)報警時間顯著提前,而采用服務(wù)器推送技術(shù)可將報警時間進一步縮短,提高了火災(zāi)響應(yīng)速度。
[Abstract]:An air-breathing composite fire detector with different fire characteristic parameter sensors is designed. The multi-sensor dynamic process information is used as the data basis of fire judgment. The method of BP neural network is used to fuse the multi-channel detection signal. The on-line detection system of electric power fire is developed, and the WebSocket technology is applied. The information of fire detection and alarm is quickly pushed to the user. The experimental results show that the integrated detection system of electric fire reports the missing information correctly, which greatly improves the accuracy of fire judgment, and the fire alarm time is significantly advanced. The server push technology can further shorten the alarm time and improve the fire response speed.
【作者單位】: 國網(wǎng)安徽省電力公司電力科學研究院;國網(wǎng)安徽省電力公司;
【基金】:安徽省自然科學基金項目(1408035MKL94);2016中國消防協(xié)會科學技術(shù)年會“青年消防學者論壇”交流論文
【分類號】:X932
【相似文獻】
相關(guān)期刊論文 前1條
1 曹晉宏;李國勇;;礦井瓦斯智能預(yù)警系統(tǒng)的設(shè)計[J];煤礦機械;2014年08期
,本文編號:1562802
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1562802.html
最近更新
教材專著