基于CAN總線的井下人員定位系統(tǒng)設(shè)計(jì)
發(fā)布時(shí)間:2018-03-03 02:15
本文選題:人員定位 切入點(diǎn):CAN總線 出處:《哈爾濱理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著我國(guó)經(jīng)濟(jì)的持續(xù)高速發(fā)展,對(duì)各種礦產(chǎn)資源的需求與日俱增,尤其是作為我國(guó)主要能源礦產(chǎn)之一的煤炭資源。我國(guó)煤炭行業(yè)的作業(yè)方式主要是井下開采,國(guó)家在煤炭安全生產(chǎn)上給予高度重視,確立了礦井必備的六大安全避險(xiǎn)系統(tǒng)—監(jiān)測(cè)監(jiān)控、人員定位、通信聯(lián)絡(luò)、緊急避險(xiǎn)、壓風(fēng)自救、供水施救。其中人員定位系統(tǒng)是集井下人員管理、跟蹤定位、災(zāi)后急救、安全預(yù)警等于一體的綜合性應(yīng)用系統(tǒng)。但由于技術(shù)與實(shí)際情況相脫離,設(shè)備的穩(wěn)定性不高,人員定位系統(tǒng)還存在諸多問(wèn)題。因此,對(duì)深入研究井下人員定位系統(tǒng)仍具有重要的意義。 本文在對(duì)我國(guó)現(xiàn)有的井下人員定位系統(tǒng)進(jìn)行深入研究的基礎(chǔ)上,結(jié)合我國(guó)煤礦行業(yè)的實(shí)際情況,設(shè)計(jì)了基于CAN總線的井下人員定位系統(tǒng)。該系統(tǒng)采用RFID技術(shù)進(jìn)行前端信息采集,以CAN總線為核心網(wǎng)進(jìn)行數(shù)據(jù)傳輸,井下通信分站與上位機(jī)的通信則通過(guò)工業(yè)以太網(wǎng)來(lái)實(shí)現(xiàn)。CAN總線技術(shù)作為關(guān)鍵技術(shù),在系統(tǒng)中起到承上啟下的作用,其特點(diǎn)是結(jié)構(gòu)簡(jiǎn)單、實(shí)時(shí)性強(qiáng)、可靠性高。尤其是CAN總線的自動(dòng)仲裁機(jī)制特別適合應(yīng)用于井下人員定位系統(tǒng)。 本設(shè)計(jì)將整個(gè)系統(tǒng)分為三個(gè)模塊進(jìn)行處理,即標(biāo)識(shí)卡射頻識(shí)別模塊、讀卡分站模塊和CAN轉(zhuǎn)以太網(wǎng)模塊。完成了人員身份等信息經(jīng)由射頻發(fā)送,讀卡分站接收到射頻信號(hào)并加載位置及時(shí)間信息,后經(jīng)由CAN總線網(wǎng)絡(luò)發(fā)送到CAN轉(zhuǎn)以太網(wǎng)模塊中,定位信息在此模塊中轉(zhuǎn)換為以太網(wǎng)信號(hào)發(fā)送給上位機(jī),即完成人員定位功能。該系統(tǒng)還具備上位機(jī)對(duì)井下人員調(diào)度,預(yù)警等功能。針對(duì)三個(gè)子模塊要實(shí)現(xiàn)的功能,系統(tǒng)采用具有豐富的外設(shè)接口,以ARM Cortex-M3為內(nèi)核的STM32微控制器作為主要控制芯片;射頻芯片采用nRF24LE1和nRF24L01+芯片,其中nRF24LE1具有高集成度,內(nèi)部集成增強(qiáng)型51內(nèi)核控制器;以太網(wǎng)芯片采用高集成度的ENC28J60,通過(guò)控制器的SPI接口即可完成對(duì)其配置。經(jīng)過(guò)大量實(shí)驗(yàn)測(cè)試,該系統(tǒng)能夠?qū)崿F(xiàn)設(shè)計(jì)功能,,具有良好的實(shí)時(shí)性和穩(wěn)定性。
[Abstract]:With the sustained and rapid development of China's economy, the demand for various mineral resources is increasing day by day, especially the coal resources, which are one of the main energy minerals in our country. The state attaches great importance to the safety of coal production, and has established six necessary safety and risk aversion systems for coal mines-monitoring, monitoring, personnel positioning, communication and liaison, emergency risk avoidance, and air pressure and self-rescue. The personnel positioning system is a comprehensive application system that integrates underground personnel management, tracking and positioning, first aid after disaster and safety warning. However, because the technology is divorced from the actual situation, the stability of the equipment is not high. There are still many problems in the personnel positioning system, therefore, it is still of great significance for the further study of the underground personnel positioning system. Based on the in-depth study of the existing downhole personnel positioning system in China, this paper combines the actual situation of the coal mine industry in China. The downhole personnel positioning system based on CAN bus is designed. The system adopts RFID technology to collect front-end information and uses CAN bus as the core network for data transmission. The communication between the underground communication sub-station and the host computer is realized by industrial Ethernet as the key technology, which plays a connecting role in the system. It is characterized by simple structure and strong real-time performance. High reliability, especially the automatic arbitration mechanism of CAN bus is especially suitable for underground personnel positioning system. This design divides the whole system into three modules to process, namely, the RFID module, the sub-station module and the CAN to Ethernet module. After receiving the radio frequency signal and loading the position and time information, the card reading sub-station transmits the position and time information to the CAN to Ethernet module via the CAN bus network, in which the positioning information is converted to the Ethernet signal and sent to the upper computer. The system also has the functions of the upper computer to the downhole personnel dispatching, warning and so on. In view of the functions to be realized by the three sub-modules, the system adopts a rich peripheral interface. STM32 microcontroller based on ARM Cortex-M3 is used as the main control chip, nRF24LE1 and nRF24L01 chips are used in RF chip, in which nRF24LE1 has high integration and internal integration enhanced 51 kernel controller. The Ethernet chip uses ENC28J60 with high integration, which can be configured through the SPI interface of the controller. After a lot of experiments, the system can realize the design function, and has good real-time and stability.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TD76
【引證文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 張程遠(yuǎn);基于無(wú)線網(wǎng)絡(luò)傳輸?shù)木氯藛T定位[D];太原科技大學(xué);2015年
本文編號(hào):1559101
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1559101.html
最近更新
教材專著