天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 安全工程論文 >

露天礦礦井涌水量動態(tài)模擬研究

發(fā)布時(shí)間:2018-01-26 04:17

  本文關(guān)鍵詞: 露天礦 礦井涌水量 數(shù)值模擬 drain模塊 well模塊 出處:《中國地質(zhì)大學(xué)(北京)》2016年碩士論文 論文類型:學(xué)位論文


【摘要】:礦井涌水量是指從礦山開拓到回采過程中,單位時(shí)間內(nèi)流入礦坑(包括井、巷、巷道系統(tǒng))的水量。它是確定礦床水文地質(zhì)類型、礦床水文地質(zhì)條件復(fù)雜程度和評價(jià)礦床經(jīng)濟(jì)技術(shù)條件的重要指標(biāo)之一。本文以內(nèi)蒙古某露天煤礦為例,收集研究區(qū)內(nèi)及周邊146個(gè)鉆孔資料,并對研究區(qū)進(jìn)行了三期地下水位統(tǒng)測,全面了解礦區(qū)及周邊地層構(gòu)造及水文地質(zhì)條件。通過所收集資料,運(yùn)用GMS軟件,建立研究區(qū)三維地質(zhì)模型及地下水?dāng)?shù)值模型。并以此為基礎(chǔ),將礦坑疏干排水概化為定流量疏排水及定水頭疏排水兩個(gè)階段,以首采區(qū)及二采區(qū)為例,運(yùn)用Well模塊模擬定流量疏排水階段,Drain模塊模擬定水頭疏排水階段,實(shí)現(xiàn)了礦井涌水量隨時(shí)間變化的連續(xù)動態(tài)模擬?臻g上則通過對地形變化進(jìn)行合理概化,模擬了首采區(qū)開采完成后二采區(qū)疏排水的動態(tài)過程。利用這種模擬方式不僅可以通過Drain模塊對目標(biāo)水位進(jìn)行較為準(zhǔn)確的控制,同時(shí)也能通過Well模塊表現(xiàn)出逐步疏排水的過程。經(jīng)過模擬,本次研究得到以下成果:(1)模型經(jīng)過識別期、驗(yàn)證期監(jiān)測水位校正,擬合程度較好。通過模型進(jìn)行了研究區(qū)地下水均衡計(jì)算。計(jì)算結(jié)果表明模擬期內(nèi)地下水總補(bǔ)給量179.23萬m3/a,總排泄量203.01萬m3/a,均衡差23.78萬m3/a,為負(fù)均衡。(2)首采區(qū)一年內(nèi)礦井總疏干水量為5211m3/d,定水頭疏排水階段礦井涌水量為2310.97 m3/d。礦井涌水量年內(nèi)變化幅度較小,8月份達(dá)到最大值為2364.96m3/d,11月份為年內(nèi)最小值,為2230.45m3/d。(3)二采區(qū)開采時(shí)因受首采區(qū)疏排水的影響,初始水位較低,因此二采區(qū)1年內(nèi)礦井總疏干水量較首采區(qū)大幅減少,為2647m3/d。礦井涌水量7月份達(dá)到最大值為1902.05m3/d,10月底礦井涌水量為最小值,為1750.72m3/d,年內(nèi)平均礦井涌水量為1817.03 m3/d。與首采區(qū)相比均有所減少。(4)礦井的疏排水對研究區(qū)內(nèi)地下水流場影響巨大。首采區(qū)開采期間采區(qū)周邊潛水含水層地下水位最大下降約14~16m,承壓含水層水位最大下降約50m,形成了巨大的降落漏斗。二采區(qū)初始水位較低,但經(jīng)過疏排水水位仍有明顯下降。
[Abstract]:Mine water inflow refers to the amount of water flowing into the pit (including well, roadway and roadway system) per unit time from mine development to mining process. It is to determine the hydrogeological type of ore deposit. One of the important indexes for evaluating the economic and technological conditions of the deposit is the complexity of the hydrogeological conditions of the deposit. Taking an open pit coal mine in Inner Mongolia as an example, 146 boreholes in and around the study area are collected. Three periods of groundwater level series survey were carried out in the study area, and the geological structure and hydrogeological conditions of the mining area and its surrounding strata were comprehensively understood. Through the collected data, GMS software was used. The 3D geological model and groundwater numerical model of the study area are established, and based on this, the drainage of pit drainage is generalized into two stages: constant discharge drainage and constant head drainage, taking the first mining area and the second mining area as examples. The Well module is used to simulate the constant flow drainage stage and the Drain module to simulate the constant head drainage stage. The continuous dynamic simulation of mine water inflow with time is realized, and the terrain change is reasonably generalized in space. This paper simulates the dynamic process of drainage in the second mining area after the completion of the first mining area, and not only can the target water level be controlled more accurately by using this simulation mode, but also through the Drain module. At the same time through the Well module to show the gradual drainage process. After simulation, this study obtained the following results: 1) the model through the identification period, validation period monitoring water level correction. The results show that the total groundwater recharge is one million seven hundred and ninety-two thousand and three hundred m3 / a and the total discharge is two million thirty thousand and one hundred m3 / a during the simulation period. The balance difference of 237,800 m3 / a, which is negative equilibrium, is 5211m3 / d in the first mining area in one year. At the stage of fixed head drainage and drainage, the mine discharge is 2310.97 m3 / d. The range of mine discharge is small and the maximum value is 2364.96 m3 / d in August. In November, the minimum value was 2230.45 m / 3 / d. 3) the initial water level was lower in the second mining area because of the influence of drainage in the first mining area. As a result, the total drainage capacity of the second mining area in one year is much less than that of the first mining area, which is 2647 m3 / d. In July, the mine water inflow reached the maximum value of 1902.05 m3 / d. At the end of October, the mine discharge was the minimum value, which was 1750.72 m3 / d. The average mine discharge during the year was 1817.03 m3 / d. The drainage of mine has a great influence on the groundwater field in the study area. During the first mining period, the groundwater level of the submersible aquifer around the mining area decreases by about 14 ~ 16m. The maximum water level of the confined aquifer is about 50 m, forming a huge drop funnel. The initial water level of the second mining area is low, but the water level of the secondary mining area still decreases obviously after drainage.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TD742

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 肖有才,張秀成,顧志民;淺埋型礦井涌水量預(yù)測預(yù)報(bào)的灰色模型[J];中國安全科學(xué)學(xué)報(bào);2004年05期

2 蘇萍;張雙樓煤礦礦井涌水量預(yù)計(jì)及防治水建議[J];能源技術(shù)與管理;2005年02期

3 朱雷;;礦井涌水量觀測的幾種簡單方法[J];煤炭技術(shù);2007年01期

4 錢學(xué)溥;;預(yù)測礦井涌水量的計(jì)算級別與精度評述[J];中國煤田地質(zhì);2007年05期

5 郭文雅;溫繼滿;;談礦井涌水量預(yù)測方法的發(fā)展[J];黑龍江科技信息;2008年25期

6 楊永國;陳玉華;;礦井涌水量混沌特征與預(yù)測[J];地球科學(xué)(中國地質(zhì)大學(xué)學(xué)報(bào));2009年02期

7 賀治強(qiáng);李書文;郭好杰;郭振橋;;季節(jié)性降水和蓄水對礦井涌水量的影響[J];中州煤炭;2011年03期

8 陳建宏;施飛;鄭海力;韓玉建;;基于灰色神經(jīng)網(wǎng)絡(luò)的礦井涌水量預(yù)測[J];礦業(yè)研究與開發(fā);2011年02期

9 劉德旺;;雙柳煤礦礦井涌水量數(shù)值模擬研究[J];地下水;2012年01期

10 史曉勇;李秀山;李向陽;張?jiān)霰?;基于灰色系統(tǒng)理論的礦井涌水量預(yù)測[J];煤炭科技;2012年02期

相關(guān)會議論文 前4條

1 劉洋;李凱;王振榮;;礦井涌水量計(jì)算方法評述[A];高產(chǎn)高效煤礦建設(shè)的地質(zhì)保障技術(shù)——陜西省煤炭學(xué)會學(xué)術(shù)年會論文集·2009[C];2009年

2 史麗萍;胡泳軍;張國信;張曉;張世芳;苗長新;董海波;謝業(yè)良;朱永平;魏輝;陳麗兵;鹿獻(xiàn)德;;礦井涌水量自動監(jiān)測系統(tǒng)[A];2003年度中國煤炭工業(yè)協(xié)會科學(xué)技術(shù)獎(jiǎng)獲獎(jiǎng)項(xiàng)目匯編[C];2004年

3 王皓;;基于灰色理論的西北淺埋型礦井涌水量預(yù)測[A];煤礦水害防治技術(shù)研究——陜西省煤炭學(xué)會學(xué)術(shù)年會論文集(2013)[C];2013年

4 李云峰;徐勝平;李忠凱;;Excel在海孜煤礦礦井涌水量估算中的應(yīng)用[A];中國煤炭學(xué)會礦井地質(zhì)專業(yè)委員會2008年學(xué)術(shù)論壇文集[C];2008年

相關(guān)重要報(bào)紙文章 前1條

1 歐陽寶塔 孫國華;巧治活用礦井水[N];中國煤炭報(bào);2009年

相關(guān)博士學(xué)位論文 前1條

1 許珂;臺格廟礦區(qū)頂板涌(突)水危險(xiǎn)性評價(jià)與礦井涌水量預(yù)測[D];中國礦業(yè)大學(xué)(北京);2016年

相關(guān)碩士學(xué)位論文 前10條

1 徐慧;礦井涌水量預(yù)測研究[D];華北科技學(xué)院;2015年

2 李彬;新疆清河縣頓巴斯套金礦礦井涌水量預(yù)測及突水危險(xiǎn)性評價(jià)[D];西南交通大學(xué);2014年

3 劉岳霖;湖北宜昌杉西礦段磷礦礦井涌水量預(yù)測[D];中國地質(zhì)大學(xué)(北京);2016年

4 楊白駒;露天礦礦井涌水量動態(tài)模擬研究[D];中國地質(zhì)大學(xué)(北京);2016年

5 魏軍;礦井涌水量的數(shù)值模擬研究[D];遼寧工程技術(shù)大學(xué);2007年

6 毛邦燕;復(fù)雜巖溶介質(zhì)礦井涌水量的三維數(shù)值模擬研究[D];成都理工大學(xué);2005年

7 李順;康城煤礦礦井涌水系統(tǒng)數(shù)值模擬[D];河北工程大學(xué);2009年

8 劉永林;朝川礦深部礦井涌水量數(shù)值模擬與預(yù)測[D];河南理工大學(xué);2009年

9 朱宏軍;鴛鴦湖礦區(qū)礦井涌水量預(yù)測方法研究[D];煤炭科學(xué)研究總院;2014年

10 高迪;鶴壁寺灣礦井涌水量計(jì)算與預(yù)測[D];河南理工大學(xué);2007年



本文編號:1464649

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1464649.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶32a10***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com