區(qū)域經(jīng)濟(jì)單位GDP能耗的解析研究
[Abstract]:Energy is an important strategic material. The scarcity and non-renewable of energy make it the most important material related to people's livelihood and social and economic development. The energy efficiency of regional economy has become a hot issue in recent years. This paper takes Liaoning Province as an example to analyze the energy consumption of regional economy unit GDP. In this paper, the relationship between economic growth and energy consumption is studied, in order to grasp the change law of energy consumption per unit GDP of regional economy, to construct reasonable and effective prediction, early warning method and system of unit GDP energy consumption, in order to change the mode of development. Promote regional economic and scientific development, build a resource-saving, environmental-friendly society to provide adequate protection. This paper mainly studies the influencing factors of unit GDP energy consumption. Based on the analysis and statistics of a large number of relevant data, the prediction and early warning model of unit GDP energy consumption in regional economy is established. The contents of the work are divided into the following five aspects: 1) according to the actual situation, the relevant data published and recorded by the Bureau of Statistics are analyzed, and the electricity consumption and production value closely related to the energy consumption per GDP are mainly studied. Based on the data of industrial structure and energy consumption structure, the correlation of data is analyzed, and the statistical value of electricity consumption, historical energy consumption and historical GDP are used as the basis of the prediction and early warning model. On this basis, the data is preprocessed to lay a data foundation for the construction of unit GDP energy consumption prediction model. (2) aiming at the problem of less data in the research, the support vector machine (SVM) algorithm is used to build the model. In order to further improve the accuracy of the established model, the particle swarm optimization algorithm (PSO) is used to optimize the parameters of the SVM algorithm. The experimental results show that the proposed algorithm can better follow the change of the actual situation, the prediction error is low, and it can meet the actual demand of 3. 3) the prediction results of unit GDP energy consumption can be analyzed. According to the given unit GDP energy consumption warning range, the unit GDP energy consumption warning is realized. The early warning of unit GDP energy consumption is another form of prediction results, which can more intuitively represent the predicted results and provide data support for decision makers.) the relevant factors that may affect the unit GDP energy consumption are studied. The relationship between industrial structure, energy consumption structure and energy consumption per unit of regional economy is analyzed qualitatively and quantitatively. The possible factors and ways of influencing energy consumption per unit GDP are analyzed, and the efficiency of energy utilization is improved. The theoretical direction of reducing the unit GDP energy consumption and providing operational direction 5) combined with the prediction and early warning algorithm proposed in this paper, a regional economic unit GDP energy consumption prediction system and its early warning subsystem are constructed. On the basis of realizing data management and other basic functions, the system has better prediction ability of unit GDP energy consumption, and the relative error between predicted value and actual value is small, which meets the management requirements of unit GDP energy consumption. At the same time, based on the prediction and analysis results, the system constructs a unit GDP energy consumption warning subsystem, and provides a variety of results display methods to achieve good human-computer interaction.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:F127;F205
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王一凡;趙歡;王培紅;;能耗管理數(shù)據(jù)庫系統(tǒng)的開發(fā)與利用[J];上海節(jié)能;2008年09期
2 姜銳;;循環(huán)經(jīng)濟(jì)視角下的飯店能耗管理對(duì)策探討[J];經(jīng)濟(jì)研究導(dǎo)刊;2010年35期
3 劉鴻翔;;上印五廠的能耗管理制度[J];北京節(jié)能;1992年03期
4 彭代軍;論我國住宅水電氣能耗現(xiàn)代化收費(fèi)管理[J];重慶師專學(xué)報(bào);1999年02期
5 劉桂花;孫飛;;強(qiáng)化能耗監(jiān)督管理 降低能源消耗[J];資源節(jié)約與環(huán)保;2009年03期
6 朱玲;;長沙星級(jí)飯店能耗管理狀況及改進(jìn)[J];中國商貿(mào);2010年14期
7 胡兆光;;GDP能耗與電耗的關(guān)系[J];中國能源;2006年07期
8 張樂;;酒店能耗控制指標(biāo)研究[J];能源研究與信息;2006年01期
9 本刊編輯部;;加強(qiáng)能耗管理控制 推進(jìn)公共建筑節(jié)能——訪全國政協(xié)常委、江西省工商聯(lián)主席、泰豪集團(tuán)董事長黃代放[J];智能建筑;2009年04期
10 孫晉響,耿翠堂;淺談建立有利于企業(yè)節(jié)能降耗、增效管理的新機(jī)制[J];煤炭加工與綜合利用;2003年03期
相關(guān)會(huì)議論文 前1條
1 黃韌;羅記龍;;綠色通信能耗專家系統(tǒng)[A];通信電源新技術(shù)論壇2011通信電源學(xué)術(shù)研討會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 記者 張陸龍;我市推行更嚴(yán)格能耗管理制度[N];紹興日?qǐng)?bào);2010年
2 通訊員 聶卿;漳澤發(fā)電分公司開展能耗評(píng)估[N];中國電力報(bào);2005年
3 本報(bào)記者 馬玲 通訊員 熊杰;管控住每一個(gè)能耗點(diǎn)[N];中國石化報(bào);2014年
4 郗海才;齊魯煉廠能耗管理效果顯著[N];中國石化報(bào);2004年
5 方彤;河南油田試油部三道防線降能耗[N];中國石化報(bào);2008年
6 本報(bào)記者 穆廣田 通訊員 賀地紅;打好“組合牌” 能耗降下來[N];中國石油報(bào);2013年
7 記者 王衍國 劉新圣;齊魯石化儲(chǔ)運(yùn)廠節(jié)能實(shí)現(xiàn)新突破[N];物資信息報(bào);2005年
8 薛振河;依靠科技進(jìn)步 加強(qiáng)能耗管理 建設(shè)節(jié)約型企業(yè)[N];中國航空?qǐng)?bào);2006年
9 記者 余萬芳邋見習(xí)記者 魏金金;能耗不降,企業(yè)和政府領(lǐng)導(dǎo)一律“問責(zé)”[N];紹興日?qǐng)?bào);2007年
10 劉楠;我國首個(gè)電廠能耗實(shí)時(shí)監(jiān)控系統(tǒng)問世[N];中國知識(shí)產(chǎn)權(quán)報(bào);2008年
相關(guān)博士學(xué)位論文 前1條
1 郝亮;面向能耗優(yōu)化的云計(jì)算資源調(diào)度算法研究[D];哈爾濱工業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 黃健剛;溫和地區(qū)高校教學(xué)樓建筑能耗定額研究[D];昆明理工大學(xué);2015年
2 尚振東;銑鏜床能耗測試與分析研究[D];哈爾濱工業(yè)大學(xué);2015年
3 孫紅艷;基于能源統(tǒng)計(jì)的山東省城鎮(zhèn)住宅建筑能耗的研究[D];重慶大學(xué);2015年
4 胡文虹;水泥廠能耗排放無線實(shí)時(shí)監(jiān)測系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];大連理工大學(xué);2015年
5 劉作鵬;建筑能耗無線監(jiān)測系統(tǒng)的研究與設(shè)計(jì)[D];大連理工大學(xué);2015年
6 柳紅日;面向SLA和負(fù)載均衡及能耗的多目標(biāo)云資源調(diào)度研究[D];哈爾濱工業(yè)大學(xué);2015年
7 張雪萊;基站能耗典型場景劃分及標(biāo)桿制定[D];北京郵電大學(xué);2015年
8 王穎;云計(jì)算平臺(tái)中的能耗優(yōu)化管理研究[D];南京郵電大學(xué);2015年
9 丁洪利;面向延遲及能耗優(yōu)化的云計(jì)算數(shù)據(jù)部署研究[D];合肥工業(yè)大學(xué);2015年
10 徐兆華;基于.NET的高校能耗系統(tǒng)研究[D];吉林大學(xué);2015年
,本文編號(hào):2222324
本文鏈接:http://sikaile.net/jingjilunwen/quyujingjilunwen/2222324.html