紅興隆管理局農(nóng)業(yè)水文要素復(fù)雜性測度及其發(fā)展態(tài)勢研究
本文關(guān)鍵詞:紅興隆管理局農(nóng)業(yè)水文要素復(fù)雜性測度及其發(fā)展態(tài)勢研究 出處:《東北農(nóng)業(yè)大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 紅興隆管理局 復(fù)雜性 農(nóng)業(yè)水文要素 預(yù)測
【摘要】:紅興隆管理局是我國重要的糧食儲備基地和商品糧生產(chǎn)基地。如今,在國家糧食政策和經(jīng)濟(jì)利益雙重影響下,管理局內(nèi)水稻種植量迅猛增加,變旱為水面積迅速增長,局部超采現(xiàn)象時有發(fā)生,加之地表水、地下水利用存在較嚴(yán)重的不平衡、用水結(jié)構(gòu)不合理等問題日益突出,實現(xiàn)生態(tài)可持續(xù)利用、經(jīng)濟(jì)利益最大化已經(jīng)成為本區(qū)域研究重點。因此,從和諧發(fā)展理念出發(fā),深入研究紅興隆管理局農(nóng)業(yè)水文要素復(fù)雜性測度分析方法,揭示其復(fù)雜性空間變異規(guī)律,分析農(nóng)業(yè)水文要素發(fā)展態(tài)勢,進(jìn)而實現(xiàn)農(nóng)業(yè)水資源優(yōu)化配置等,對促進(jìn)區(qū)域經(jīng)濟(jì)發(fā)展及保障我國糧食產(chǎn)能安全具有重大意義。 本文以紅興隆管理局下屬12農(nóng)場為例,運(yùn)用符號動力學(xué)理論、分形理論正確診斷紅興隆管理局農(nóng)業(yè)水文要素復(fù)雜性并排序,建立了復(fù)雜性視角下的復(fù)雜農(nóng)業(yè)水文要素和農(nóng)業(yè)水文要素復(fù)雜性預(yù)測模型。主要研究內(nèi)容和結(jié)論如下: (1)采用等概率粗粒化LZC算法、多尺度半方差分維算法分別對紅興隆管理局各農(nóng)場逐月地下水埋深序列、逐月降水序列進(jìn)行復(fù)雜性診斷,對比分析診斷結(jié)果,篩選出最優(yōu)測度方法。考慮到該方法粗;螖(shù)選取人為干擾因素大,引入自適應(yīng)人工魚群優(yōu)化關(guān)鍵參數(shù),以優(yōu)化后的等概率粗;疞ZC算法診斷結(jié)果為最終評價結(jié)果:①逐月地下水埋深序列:紅旗嶺農(nóng)場、二九一農(nóng)場、曙光農(nóng)場、北興農(nóng)場地下水埋深序列復(fù)雜性最高,江川農(nóng)場、八五二農(nóng)場、五九七農(nóng)場、雙鴨山農(nóng)場復(fù)雜性一般,八五三農(nóng)場、友誼農(nóng)場、寶山農(nóng)場、饒河農(nóng)場復(fù)雜性最低;②逐月降水序列:八五三農(nóng)場、八五二農(nóng)場、紅旗嶺農(nóng)場復(fù)雜性最高,雙鴨山農(nóng)場、江川(寶山)農(nóng)場、饒河農(nóng)場復(fù)雜性一般,友誼農(nóng)場、北興(曙光)農(nóng)場、二九一農(nóng)場、五九七農(nóng)場復(fù)雜性最低。 (2)采用小波神經(jīng)網(wǎng)絡(luò)(WNN)、灰色小波神經(jīng)網(wǎng)絡(luò)(GWNN)算法構(gòu)建復(fù)雜性視角下的紅興隆管理局復(fù)雜農(nóng)業(yè)水文要素預(yù)測模型,結(jié)果表明:①灰色小波神經(jīng)網(wǎng)絡(luò)為紅興隆管理局各農(nóng)場地下逐月水埋深序列、逐月降水序列最優(yōu)預(yù)測模型;②友誼農(nóng)場地下水埋深序列預(yù)測結(jié)果:2013、2015、2016年地下水埋深有上升趨勢,2014年地下水埋深有下降趨勢,縱向比較可知,地下水埋深序列有先上升后下降再上升趨勢;③紅旗嶺農(nóng)場地下水埋深序列預(yù)測結(jié)果:地下水埋深呈上升、下降波動變化,縱向比較可知,地下水埋深序列有先上升后下降再上升趨勢;④597農(nóng)場降水序列預(yù)測結(jié)果:降水序列呈上升、下降再上升趨勢;縱向比較可知,降水序列整體呈上升下降趨勢,降雨量峰值集中在6-9月之間;⑤853農(nóng)場降水序列預(yù)測結(jié)果:降水序列下降趨勢,只有2016年降水量略有回升;縱向比較可知,降水序列整體呈上升下降趨勢,降雨量峰值集中在6-9月之間。 (3)構(gòu)建基于復(fù)雜性診斷結(jié)果及最優(yōu)預(yù)測模型結(jié)果的紅興隆管理局地下水埋深復(fù)雜性體系、降水復(fù)雜性體系,以地下水埋深序列最復(fù)雜的紅旗嶺農(nóng)場、降水序列最復(fù)雜的853農(nóng)場為例,分析紅興隆管理局農(nóng)業(yè)水文要素復(fù)雜性動態(tài)變化規(guī)律,結(jié)果表明:①紅旗嶺農(nóng)場地下水復(fù)雜性序列有整體下降趨勢,2013年下半年復(fù)雜度值急劇下降,2014年復(fù)雜性先上升后下降,年內(nèi)的復(fù)雜度值有一定的周期現(xiàn)象;②853農(nóng)場降水復(fù)雜性序列有整體下降趨勢,2012、2013年復(fù)雜度值急劇下降,2014年~2018年復(fù)雜性上升趨勢,年紀(jì)內(nèi)的復(fù)雜度值有一定的周期現(xiàn)象。
[Abstract]:Hong Xinglong administration is an important grain reserve base and commodity grain production base in China. Now, in the national food policy and economic benefits under the dual influence of authority, the rapid increase in the amount of rice planting, dry water area increased rapidly, partial overpumping have occurred, and the surface water, groundwater is not balanced the more serious water problems, such as unreasonable structure have become increasingly prominent, realize the sustainable utilization of the ecological and economic benefit maximization has become the research focus. Therefore, starting from the concept of harmonious development of science, bureau of agriculture and hydrological complexity measure analysis method in-depth study of Hongxinglong tube, reveal the complexity of spatial variability, analyzes the development trend of agricultural hydrological factors then, to achieve the optimal allocation of agricultural water resources, is of great significance to promote regional economic development and ensure grain production safety in China.
In this paper, Hong Xinglong administration under the 12 farm as an example, using symbolic dynamics theory, fractal theory, the correct diagnosis of Hong Xinglong administration of agricultural and hydrological complexity sorting, build the complex agricultural and agricultural hydrological hydrological complexity from the perspective of the forecasting model. The main research contents and conclusions are as follows:
(1) using equiprobable LZC algorithm, multi-scale fractal algorithm of semi variance of Hong Xinglong administration of each farm monthly groundwater depth series, monthly precipitation sequence comparative analysis of complexity of diagnosis, diagnosis, screening out the optimal measurement method. Considering the method of coarse grain number selection much disturbed factors the introduction of adaptive artificial fish swarm optimization, the key parameters to optimize the equiprobable LZC algorithm diagnosis results as the final evaluation results: Monthly groundwater depth series: Hongqiling farm, 291 farm, dawn farm, Beixing farm groundwater depth series highest complexity, Jiangchuan farms, 852 farms, 597 farms, Shuangyashan the 853 farm, farm complex, friendship farm, Baoshan farm, farm Raohe complexity is lowest; the monthly precipitation sequence: 853 farms, 852 farms, Hongqiling The highest complexity farm farm in Shuangyashan, Jiangchuan, (Baoshan) farm, farm Raohe complex, friendship farm, North Hing (Shu Guang) farms, 291 farms, 597 farms in the lowest complexity.
(2) using wavelet neural network (WNN), grey wavelet neural network (GWNN) algorithm to construct the complexity from the perspective of Hong Xinglong administration of agricultural complex hydrological forecasting model, the results show that: 1. The grey wavelet neural network depth sequence of Hong Xinglong administration of each farm underground water monthly, monthly precipitation sequence optimal prediction model; prediction the friendship farm groundwater depth series: 201320152016 years of groundwater depth has increased, in 2014 the groundwater depth decline, longitudinal comparison, groundwater depth series have increased after the first drop and then increased; the prediction results the Hongqiling farm groundwater depth series: groundwater depth increased, decreased fluctuations. The longitudinal comparison shows that groundwater depth series have increased after the first drop and then rise again; the prediction results of 597 farm precipitation sequence: precipitation increased, under the Fall and then rise again; the longitudinal comparison, the overall upward trend of precipitation, rainfall concentrated in the peak between 6-9 months; the prediction results of 853 farms: precipitation precipitation decreased, only the precipitation in 2016 rose slightly; the longitudinal comparison, the overall upward trend of precipitation, rainfall concentrated in the peak between 6-9 months.
(3) the construction complexity of diagnosis and optimal prediction model based on the results of Hong Xinglong administration system of underground water depth, complexity of precipitation system, Hongqiling farm to groundwater depth series the most complex, the most complex precipitation sequences of 853 farm as an example, analysis of red prosperous changes, complexity of dynamic Agricultural Bureau hydrological management results show: the Hongqiling farm groundwater sequence complexity have declined overall trend, the second half of 2013 the complexity value fell sharply in 2014 the complexity increased after the first drop, the complexity of value during the year is periodic phenomenon; the 853 farm precipitation sequence complexity overall downward trend, 20122013 years complexity value fell sharply from 2014 to 2018. The complexity of a rising trend, the complexity of the value in the period of age phenomenon.
【學(xué)位授予單位】:東北農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:F323.213;S271
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王文圣,向紅蓮,趙東;水文序列分形維數(shù)估計的小波方法[J];四川大學(xué)學(xué)報(工程科學(xué)版);2005年01期
2 于國榮;夏自強(qiáng);;混沌時間序列支持向量機(jī)模型及其在徑流預(yù)測中應(yīng)用[J];水科學(xué)進(jìn)展;2008年01期
3 李賢彬,丁晶,李后強(qiáng);水文時間序列的子波分析法[J];水科學(xué)進(jìn)展;1999年02期
4 孫廣振,王勁松;深圳股市混沌現(xiàn)象的辨識及其討論[J];數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究;1994年01期
5 陳宣;楊禮;楊智杰;陳姝;劉高峰;;利用人工魚群算法求解一類函數(shù)的極值[J];韶關(guān)學(xué)院學(xué)報;2009年12期
6 李國良;付強(qiáng);馮艷;李偉業(yè);劉仁濤;;基于混沌的三江平原月降水時間序列分析[J];數(shù)學(xué)的實踐與認(rèn)識;2007年06期
7 劉東;付強(qiáng);;基于小波隨機(jī)耦合模型的三江平原年降水量預(yù)測[J];數(shù)學(xué)的實踐與認(rèn)識;2008年01期
8 付強(qiáng);李國良;;三江平原地下水埋深時間序列的混沌研究[J];水土保持研究;2008年03期
9 陳鎖忠,閭國年,黃家柱;錫山市西部地區(qū)地下水資源計算模型研究[J];水文;2002年01期
10 張勤;控制太陽活動的混沌吸引子(英)[J];天文學(xué)進(jìn)展;1998年01期
,本文編號:1360354
本文鏈接:http://sikaile.net/jingjilunwen/quyujingjilunwen/1360354.html