旅游移動(dòng)商務(wù)環(huán)境中基于情景的多維用戶(hù)偏好模型及個(gè)性化推薦方法研究
[Abstract]:Tourism mobile service is a highly dependent mobile service. When users accept personalized recommendation of tourism products, the current situation will have a certain degree of impact on user preferences. The research on personalized recommendation of tourism mobile commerce has become one of the current hot spots. At present, there is a lack of dimensionality weight and similar recommendation results in the research of situation-based personalized recommendation of tourism mobile commerce. Although some of the studies use situational elements to extend the user feature set, they do not fully consider the impact of each situational element itself on the recommended results and user preferences. Some studies only use the scene elements of physical environment dimension such as time and place as the dimension of constructing user preference model and the basis of producing recommendation. The results obtained by users with different characteristics in the same situation are similar. Not very well to achieve personalized recommendation. In order to improve the degree of personalization and adaptability of tourism mobile commerce, and make users can better self-service through tourism mobile commerce recommendation system, this paper focuses on the above two problems. From the perspective of scene, this paper takes the recommendation of scenic spots as an example to study the personalized recommendation method in the tourism mobile commerce environment. On the basis of analyzing the present situation of the research on the tourism mobile commerce and the personalized recommendation method, this paper synthetically uses the scenario theory. In the four dimensions of current situation, historical situation, user history behavior record and user basic characteristics, Bayesian network is used to infer user preference, and a multi-dimensional user preference model is constructed. On this basis, the existing personalized recommendation methods have been improved. The experimental results show that the proposed personalized recommendation method based on multi-dimensional user preference model is superior to the traditional personalized recommendation algorithm to some extent.
【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:F274;F713.36;F590
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐風(fēng)苓;孟祥武;王立才;;基于移動(dòng)用戶(hù)上下文相似度的協(xié)同過(guò)濾推薦算法[J];電子與信息學(xué)報(bào);2011年11期
2 顧君忠;;情景感知計(jì)算[J];華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年05期
3 李聰;梁昌勇;馬麗;;基于領(lǐng)域最近鄰的協(xié)同過(guò)濾推薦算法[J];計(jì)算機(jī)研究與發(fā)展;2008年09期
4 陶岳;何震瀛;張家琪;;關(guān)系數(shù)據(jù)庫(kù)上基于元組組合的關(guān)鍵字查詢(xún)[J];計(jì)算機(jī)研究與發(fā)展;2011年10期
5 孫怡;陸均良;;旅游移動(dòng)商務(wù)國(guó)內(nèi)外研究述評(píng)[J];經(jīng)濟(jì)論壇;2010年06期
6 劉旭東;陳德人;鐘蘇麗;;使用群體興趣偏好度的協(xié)同過(guò)濾推薦[J];計(jì)算機(jī)工程與應(yīng)用;2010年34期
7 謝珩;張結(jié)魁;;基于Web服務(wù)的旅游超市商務(wù)平臺(tái)[J];計(jì)算機(jī)工程;2008年14期
8 余小高;余小鵬;;一種基于角相似性的k-最近鄰搜索算法[J];計(jì)算機(jī)應(yīng)用研究;2009年09期
9 陳天嬌;胥正川;黃麗華;;情景感知服務(wù)的用戶(hù)接受模型研究[J];科技進(jìn)步與對(duì)策;2007年02期
10 彭潤(rùn)華;陽(yáng)震青;熊勵(lì);;旅游移動(dòng)商務(wù)游客接受實(shí)證研究——基于對(duì)桂林游客的調(diào)查[J];旅游學(xué)刊;2009年04期
,本文編號(hào):2195022
本文鏈接:http://sikaile.net/jingjilunwen/lyjj/2195022.html