金融波動(dòng)率的非線性分析及其應(yīng)用
[Abstract]:The study of the statistical characteristics of volatility in financial markets has been a very important subject in the field of finance. Because of the special research background and nonlinear characteristics of financial volatility, it is more and more important to estimate and predict financial volatility. In this paper, the ARFIMA-EGARCH-GED model (generalized error distribution of disturbance error, thegeneralizederror distribution,GED) is established to analyze the asymmetric and long memory characteristics of financial volatility. Under the condition that the model perturbs the generalized error distribution, the maximum likelihood estimation method is used to estimate the model. The boundedness of the high-order moments of the square error is proved, and the asymptotic normality of the maximum likelihood estimator is obtained. In order to analyze the "peak and thick tail", long memory and asymmetric characteristics of asset return volatility, a ARFIMA-EGARCH-GED volatility model is proposed in this paper. Taking Shanghai and Shenzhen Composite Index as an example, under the premise of T distribution, normal distribution and GED distribution respectively, the model fitting analysis is carried out, and the result of ARFIMA-EGARCH-GED model fitting volatility is the best. Compared with the EGARCH,FIGARCH model, the ARFIMA-EGARCH-GED model can solve the "peak and thick tail", long memory and asymmetric characteristics of the volatility of Shanghai and Shenzhen stock market, and the effect of the volatility fitting is better, and the volatility is predicted in the short term. In view of the good fitting effect of ARFIMA-EGARCH-GED model on volatility, the relationship between volatility and yield and the relationship between volatility and market volatility are analyzed by using the volatility fitted by the model. Two nonparametric methods, local polynomial estimation and N-W (Nadaraya-Watson) kernel estimation, are used to obtain that the higher the absolute value of the yield is, the greater the volatility is, and the less the volatility is when the return rate is 00:00. The volatility of Shanghai and Shenzhen stock markets has positive correlation and negative correlation. Local polynomial estimation is superior to N-W kernel estimation.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:F224;O212.1;F832.51
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范育超;凌能祥;;庥混合誤差下波動(dòng)函數(shù)的局部多項(xiàng)式估計(jì)[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期
2 陳澤忠,楊啟智,胡金泉;中國(guó)股票市場(chǎng)的波動(dòng)性研究——EGARCH-M模型的應(yīng)用[J];決策借鑒;2000年05期
3 楊瑞成;秦學(xué)志;;ARFIMA-EGARCH-M模型在匯率收益率波動(dòng)分析中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2009年12期
4 朱東洋;楊永;;我國(guó)股市波動(dòng)的非對(duì)稱(chēng)性和杠桿效應(yīng)研究[J];技術(shù)經(jīng)濟(jì);2010年09期
5 杜子平,蘇衛(wèi)東,張世英;金融市場(chǎng)波動(dòng)模型化研究進(jìn)展[J];西北農(nóng)林科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2002年04期
6 孫林;倪卡卡;;國(guó)際糧食價(jià)格波動(dòng)非對(duì)稱(chēng)性分析——基于T分布下EGARCH模型[J];南京農(nóng)業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2013年02期
7 魯萬(wàn)波;李竹渝;;波動(dòng)性的非參數(shù)局部多項(xiàng)式估計(jì)[J];四川大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年02期
8 任彪,李雙成;中國(guó)股票市場(chǎng)波動(dòng)非對(duì)稱(chēng)性特征研究[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2004年09期
9 周林;;股票波動(dòng)率模擬及對(duì)中國(guó)市場(chǎng)預(yù)測(cè)效果的實(shí)證研究[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2009年03期
10 林宇;;基于雙曲線記憶HYGARCH模型的動(dòng)態(tài)風(fēng)險(xiǎn)VaR測(cè)度能力研究[J];中國(guó)管理科學(xué);2011年06期
本文編號(hào):2337077
本文鏈接:http://sikaile.net/jingjilunwen/jinrongzhengquanlunwen/2337077.html