基于免疫粒子群算法的多供應(yīng)主體應(yīng)急物資供應(yīng)模型求解
本文關(guān)鍵詞:基于免疫粒子群算法的多供應(yīng)主體應(yīng)急物資供應(yīng)模型求解
更多相關(guān)文章: 運(yùn)輸經(jīng)濟(jì) 多供應(yīng)主體 免疫粒子群算法 應(yīng)急供應(yīng)模型 應(yīng)急物資
【摘要】:為了彌補(bǔ)政府應(yīng)急物資庫(kù)供應(yīng)能力不足,提升救災(zāi)物資供應(yīng)種類、時(shí)效和能力,提出由政府認(rèn)證的協(xié)議供應(yīng)商參與的多供應(yīng)主體模式,并以供應(yīng)偏差影響度最小和供應(yīng)耗時(shí)最少為目標(biāo),構(gòu)建了多目標(biāo)多周期混合整數(shù)應(yīng)急物資供應(yīng)模型,以解決應(yīng)急物資多種類動(dòng)態(tài)供應(yīng)問(wèn)題。結(jié)合免疫信息運(yùn)作機(jī)制和粒子群算法的免疫粒子群算法,以青海玉樹(shù)地震物資供應(yīng)數(shù)據(jù)為例,求出物資供應(yīng)方案。分析了方案與實(shí)際供應(yīng)數(shù)據(jù)對(duì)比差異,以及模型的有效性。結(jié)果表明:多供應(yīng)主體參與的物資供應(yīng)模式較傳統(tǒng)物資庫(kù)供應(yīng)在救援及時(shí)性和需求滿足度上有明顯優(yōu)勢(shì);免疫粒子群算法對(duì)多供應(yīng)主體模型的求解時(shí)間較CPLEX求解器有大幅縮短,提升了模型在實(shí)際場(chǎng)景中應(yīng)用的可操作性。
【作者單位】: 長(zhǎng)安大學(xué)汽車學(xué)院;
【基金】:中央高;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(310822151030) 陜西省自然科學(xué)基金青年人才項(xiàng)目(2015JQ7272)
【分類號(hào)】:F259.21;TP18
【正文快照】: 0引言應(yīng)急物流與傳統(tǒng)的商業(yè)物流不同,具有突發(fā)性、不確定性、弱經(jīng)濟(jì)性和非常規(guī)性[1-2]的特點(diǎn)。為保證救災(zāi)快速有效開(kāi)展,我國(guó)政府考慮地域特點(diǎn)和人口分布在全國(guó)設(shè)立了20余個(gè)中央物資儲(chǔ)備庫(kù)以及多個(gè)地方儲(chǔ)備庫(kù)以應(yīng)對(duì)未來(lái)可能發(fā)生的災(zāi)害,這些儲(chǔ)備庫(kù)在近年災(zāi)害發(fā)生時(shí)發(fā)揮了重要作
【相似文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 秦玉靈;孔憲仁;羅文波;;混沌量子粒子群算法在模型修正中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2010年02期
2 陳治明;;新型量子粒子群算法及其性能分析研究[J];福建電腦;2010年05期
3 牛永潔;;一種新型的混合粒子群算法[J];信息技術(shù);2010年10期
4 全芙蓉;;粒子群算法的理論分析與研究[J];硅谷;2010年23期
5 劉衍民;趙慶禎;邵增珍;;一種改進(jìn)的完全信息粒子群算法研究[J];曲阜師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年01期
6 朱童;李小凡;魯明文;;位置加權(quán)的改進(jìn)粒子群算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年05期
7 熊智挺;譚陽(yáng)紅;易如方;陳賽華;;一種并行的自適應(yīng)量子粒子群算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2011年08期
8 孟純青;;非線性粒子群算法[J];微計(jì)算機(jī)應(yīng)用;2011年08期
9 任偉建;武璇;;一種動(dòng)態(tài)改變學(xué)習(xí)因子的簡(jiǎn)化粒子群算法[J];自動(dòng)化技術(shù)與應(yīng)用;2012年10期
10 劉飛,孫明,李寧,孫德寶,鄒彤;粒子群算法及其在布局優(yōu)化中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2004年12期
中國(guó)重要會(huì)議論文全文數(shù)據(jù)庫(kù) 前10條
1 朱童;李小凡;魯明文;;位置加權(quán)的改進(jìn)粒子群算法[A];中國(guó)科學(xué)院地質(zhì)與地球物理研究所第11屆(2011年度)學(xué)術(shù)年會(huì)論文集(上)[C];2012年
2 陳定;何炳發(fā);;一種新的二進(jìn)制粒子群算法在稀疏陣列綜合中的應(yīng)用[A];2009年全國(guó)天線年會(huì)論文集(上)[C];2009年
3 陳龍祥;蔡國(guó)平;;基于粒子群算法的時(shí)滯動(dòng)力學(xué)系統(tǒng)的時(shí)滯辨識(shí)[A];第十二屆全國(guó)非線性振動(dòng)暨第九屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2009年
4 于穎;李永生;於孝春;;新型離散粒子群算法在波紋管優(yōu)化設(shè)計(jì)中的應(yīng)用[A];第十一屆全國(guó)膨脹節(jié)學(xué)術(shù)會(huì)議膨脹節(jié)設(shè)計(jì)、制造和應(yīng)用技術(shù)論文選集[C];2010年
5 劉卓倩;顧幸生;;一種基于信息熵的改進(jìn)粒子群算法[A];系統(tǒng)仿真技術(shù)及其應(yīng)用(第7卷)——'2005系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文選編[C];2005年
6 熊偉麗;徐保國(guó);;粒子群算法在支持向量機(jī)參數(shù)選擇優(yōu)化中的應(yīng)用研究[A];2007中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];2007年
7 方衛(wèi)華;徐蘭玉;陳允平;;改進(jìn)粒子群算法在大壩力學(xué)參數(shù)分區(qū)反演中的應(yīng)用[A];2012年中國(guó)水力發(fā)電工程學(xué)會(huì)大壩安全監(jiān)測(cè)專委會(huì)年會(huì)暨學(xué)術(shù)交流會(huì)論文集[C];2012年
8 熊偉麗;徐保國(guó);;單個(gè)粒子收斂中心隨機(jī)攝動(dòng)的粒子群算法[A];2009年中國(guó)智能自動(dòng)化會(huì)議論文集(第七分冊(cè))[南京理工大學(xué)學(xué)報(bào)(增刊)][C];2009年
9 馬向陽(yáng);陳琦;;以粒子群算法求解買賣雙方存貨主從對(duì)策[A];第十二屆中國(guó)管理科學(xué)學(xué)術(shù)年會(huì)論文集[C];2010年
10 趙磊;;基于粒子群算法求解多目標(biāo)函數(shù)優(yōu)化問(wèn)題[A];第二十一屆中國(guó)(天津)’2007IT、網(wǎng)絡(luò)、信息技術(shù)、電子、儀器儀表創(chuàng)新學(xué)術(shù)會(huì)議論文集[C];2007年
中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條
1 李慶偉;粒子群算法及電廠若干問(wèn)題的研究[D];東南大學(xué);2016年
2 杜毅;多階段可變批生產(chǎn)線重構(gòu)的研究[D];廣東工業(yè)大學(xué);2016年
3 尹浩;求解Web服務(wù)選取問(wèn)題的粒子群算法研究[D];東北大學(xué);2014年
4 王芳;粒子群算法的研究[D];西南大學(xué);2006年
5 安鎮(zhèn)宙;家庭粒子群算法及其奇偶性與收斂性分析[D];云南大學(xué);2012年
6 劉建華;粒子群算法的基本理論及其改進(jìn)研究[D];中南大學(xué);2009年
7 黃平;粒子群算法改進(jìn)及其在電力系統(tǒng)的應(yīng)用[D];華南理工大學(xué);2012年
8 胡成玉;面向動(dòng)態(tài)環(huán)境的粒子群算法研究[D];華中科技大學(xué);2010年
9 張靜;基于混合離散粒子群算法的柔性作業(yè)車間調(diào)度問(wèn)題研究[D];浙江工業(yè)大學(xué);2014年
10 張寶;粒子群算法及其在衛(wèi)星艙布局中的應(yīng)用研究[D];大連理工大學(xué);2007年
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條
1 張忠偉;結(jié)構(gòu)優(yōu)化中粒子群算法的研究與應(yīng)用[D];大連理工大學(xué);2009年
2 李強(qiáng);基于改進(jìn)粒子群算法的艾薩爐配料優(yōu)化[D];昆明理工大學(xué);2015年
3 付曉艷;基于粒子群算法的自調(diào)節(jié)隸屬函數(shù)模糊控制器設(shè)計(jì)[D];河北聯(lián)合大學(xué);2014年
4 余漢森;粒子群算法的自適應(yīng)變異研究[D];南京信息工程大學(xué);2015年
5 梁計(jì)鋒;基于改進(jìn)粒子群算法的交通控制算法研究[D];長(zhǎng)安大學(xué);2015年
6 楊偉;基于粒子群算法的氧樂(lè)果合成過(guò)程建模研究[D];鄭州大學(xué);2015年
7 李程;基于粒子群算法的AS/RS優(yōu)化調(diào)度方法研究[D];陜西科技大學(xué);2015年
8 樊偉健;基于混合混沌粒子群算法求解變循環(huán)發(fā)動(dòng)機(jī)數(shù)學(xué)模型問(wèn)題[D];山東大學(xué);2015年
9 陳百霞;考慮風(fēng)電場(chǎng)并網(wǎng)的電力系統(tǒng)無(wú)功優(yōu)化[D];山東大學(xué);2015年
10 戴玉倩;基于混合動(dòng)態(tài)粒子群算法的軟件測(cè)試數(shù)據(jù)自動(dòng)生成研究[D];江西理工大學(xué);2015年
,本文編號(hào):1164928
本文鏈接:http://sikaile.net/jingjifazhanlunwen/1164928.html