多模態(tài)過程的全自動離線模態(tài)識別方法
本文關(guān)鍵詞:模態(tài)識別,,由筆耕文化傳播整理發(fā)布。
全文:
(12975 KB)
(1 KB)
輸出: BibTeX | EndNote (RIS)
摘要 多模態(tài)是復雜工業(yè)生產(chǎn)過程的普遍特性.不同模態(tài)具有不同的過程特性,需要建立不同的模型,因此離線建模數(shù)據(jù)的模態(tài)劃分與識別是整個多模態(tài)過程建模的關(guān)鍵問題之一.目前,常用的聚類算法需要對其結(jié)果進行人工分析和后續(xù)處理,無法真正實現(xiàn)多模態(tài)過程的全自動模態(tài)識別.因此,本文提出一種全自動的多模態(tài)過程離線模態(tài)識別方法.首先通過寬度為H的大切割窗口對數(shù)據(jù)進行切割,利用改進的K-means聚類算法對窗口單元進行聚類;根據(jù)聚類結(jié)果,對穩(wěn)定模態(tài)淹沒現(xiàn)象進行處理,得到模態(tài)的初步劃分結(jié)果;最終,利用小滑動窗口L,對穩(wěn)定模態(tài)及過渡模態(tài)交接區(qū)域進行細劃分,準確定位穩(wěn)定模態(tài)與過渡模態(tài)的分割點.算法實現(xiàn)了多模態(tài)過程的全自動離線識別,并給出合理有效的識別結(jié)果.仿真分析表明此方法能夠?qū)崿F(xiàn)模態(tài)的自動識別,且識別結(jié)果準確.
服務(wù)
E-mail Alert
RSS
收稿日期: 2015-03-04
基金資助:國家自然科學基金(61533007,61374146,61403072),流程工業(yè)綜合自動化國家重點實驗室基礎(chǔ)科研業(yè)務(wù)費(2013ZCX02-04),中央高;究蒲袑m椯Y金(N140404020),華東理工大學探索研究專項基金(22A201514050)資助
通訊作者: 張淑美東北大學博士研究生.主要研究方向為復雜工業(yè)過程監(jiān)測與故障診斷.本文通信作者.E-mail:aries816@163.com E-mail: aries816@163.com
作者簡介: 王福利東北大學教授.主要研究方向為復雜工業(yè)過程建模、控制與優(yōu)化,工業(yè)過程監(jiān)測、質(zhì)量預(yù)報與故障診斷.E-mail:wangfuli@ise.neu.edu.cn;譚帥華東理工大學講師.主要研究方向為復雜工業(yè)過程建模,過程監(jiān)測與故障診斷.E-mail:tanshuai@ecust.edu.cn;王姝東北大學副教授.主要研究方向為復雜工業(yè)過程建模,過程監(jiān)測與故障診斷.E-mail:wangshu@ise.neu.edu.cn
引用本文:
張淑美, 王福利, 譚帥, 王姝. 多模態(tài)過程的全自動離線模態(tài)識別方法. 自動化學報, 2016, 42(1): 60-80.
ZHANG Shu-Mei, WANG Fu-Li, TAN Shuai, WANG Shu. A Fully Automatic Offline Mode Identification Method for Multi-mode Processes. Acta Automatica Sinica, 2016, 42(1): 60-80.
鏈接本文:
或
[1] Tan Shuai. Statistical Modeling and Online Monitoring for Multiple Mode Processes[Ph.D. dissertation], Northeastern University, China, 2012.(譚帥. 多模態(tài)過程統(tǒng)計建模及在線監(jiān)測方法研究[博士學位論文], 東北大學, 中國, 2012.)
[2] Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE Journal, 2008, 54(7):1811-1829
[3] Wang Jing, Hu Yi, Shi Hong-Bo. Fault detection for batch processes based on Gaussian mixture model. Acta Automatica Sinica, 2015, 41(5):899-905(王靜, 胡益, 侍洪波. 基于GMM的間歇過程故障檢測. 自動化學報, 2015, 41(5):899-905)
[4] Xie X, Shi H B. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models. Industrial and Engineering Chemistry Research, 2012, 51(15):5497-5505
[5] Ge Z Q, Gao F R, Song Z H. Mixture probabilistic PCR model for soft sensing of multimode processes. Chemometrics and Intelligent Laboratory Systems, 2011, 105(1):91-105
[6] Ge Z Q. Mixture Bayesian regularization of PCR model and soft sensing application. IEEE Transactions on Industrial Electronics, 2015, 62(7):4336-4343
[7] Ng Y S, Srinivasan R. An adjoined multi-model approach for monitoring batch and transient operations. Computers and Chemical Engineering, 2009, 33(4):887-902
[8] Lu N Y, Gao F R, Wang F L. Sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE Journal, 2004, 50(1):255-259
[9] Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control, 2007, 17(9):728-741
[10] Zhao C H, Zhang W D. Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches. Chemometrics and Intelligent Laboratory Systems, 2014, 130:135-150
[11] Tang X C, Li Y, Xie Z. Phase division and process monitoring for multiphase batch processes with transitions. Chemometrics and Intelligent Laboratory Systems, 2015, 145:72-83
[12] Wang F L, Tan S, Peng J, Chang Y Q. Process monitoring based on mode identification for multi-mode process with transitions. Chemometrics and Intelligent Laboratory Systems, 2012, 110(1):144-155
[13] Tan S, Wang F L, Peng J, Chang Y Q, Wang S. Multimode process monitoring based on mode identification. Industrial and Engineering Chemistry Research, 2012, 51(1):374-388
[14] Zhang Y W, Zhang H L. Fault detection for time-varying processes. IEEE Transactions on Control Systems Technology, 2014, 22(4):1527-1535
[15] Zhang Y W, Li S. Modeling and monitoring between-mode transition of multimodes processes. IEEE Transactions on Industrial Informatics, 2013, 9(4):2248-2255
[16] Alguwaizani A. Degeneracy on K-means clustering. Electronic Notes in Discrete Mathematics, 2012, 39:13-20
[17] Pan Tian-Hong, Xue Zhen-Kuang, Li Shao-Yuan. An online multi-model identification algorithm based on subtractive clustering. Acta Automatica Sinica, 2009, 35(2):220-224(潘天紅, 薛振框, 李少遠. 基于減法聚類的多模型在線辨識算法. 自動化學報, 2009, 35(2):220-224)
[18] Chiu S L. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems:Applications in Engineering and Technology, 1994, 2(3):267-278
[19] Jain A K, Murty M N, Flynn P J. Data clustering:a review. ACM Computing Surveys, 1999, 31(3):264-323
[20] Wang Hui-Wen. Partial Least-Squares Regression-Method and Applications. Beijing, China:National Defence Industry Press, 1999.(王惠文. 偏最小二乘回歸方法及其應(yīng)用. 北京:國防工業(yè)出版社, 1999.)
[21] Qian Peng-Jiang, Wang Shi-Tong, Deng Zhao-Hong. Fast kernel density estimate theorem and scaling up graph-based relaxed clustering method. Acta Automatica Sinica, 2011, 37(12):1422-1434(錢鵬江, 王士同, 鄧趙紅. 快速核密度估計定理和大規(guī)模圖論松弛聚類方法. 自動化學報, 2011, 37(12):1422-1434)
[22] Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. Beijing, China:China Machine Press, 2003.(蔣浩天, 拉塞爾 E L, 布拉茨 R D. 工業(yè)系統(tǒng)的故障檢測與診斷. 北京:機械工業(yè)出版社, 2003.)
[23] Larsson T, Hestetun K, Hovland E, Skogestad S. Self-optimizing control of a large-scale plant:the Tennessee Eastman process. Industrial and Engineering Chemistry Research, 2001, 40(22):4889-4901
沒有找到本文相關(guān)文獻
本文關(guān)鍵詞:模態(tài)識別,由筆耕文化傳播整理發(fā)布。
本文編號:250166
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/250166.html