高效垂直輸運(yùn)裝置優(yōu)化設(shè)計(jì)及力學(xué)性能分析
[Abstract]:In recent years, the rapid development of high-rise buildings has promoted the research of vertical traffic and transportation system. In view of the limitations of the traditional vertical transportation equipment represented by elevators, an efficient vertical transport device is proposed in this paper, which has higher working efficiency and smaller space occupation. Or a potential solution for vertical traffic and transportation systems in high-rise buildings. On the basis of structural design, the mechanical properties of the high efficiency vertical transport device are preliminarily analyzed in this paper. Through CAE technology and modern optimization design method, the main performance indexes of the device under dangerous conditions are studied. The optimization design of its main stress components is studied. Firstly, the basic principle of the high efficiency vertical transport device is expounded, and the load characteristics and distribution law of the device are preliminarily studied from the point of view of theoretical mechanics combined with the existing chain transmission tension formula, which can be used as the basis for subsequent finite element analysis and optimization design. It is considered that the maximum tension is mainly composed of the static tension of the chain caused by the weight of the chain and the external load, and the load distribution is affected by the weight of the chain under the same external load, and the force on the inside is small on the whole. The finite element numerical simulation of the initial model (50 times magnified by standard transmission chain CHE80) is carried out with the help of ANSYS software. The analysis results show that there is stress concentration in the hinged part of the shaft hole, the maximum stress reaches 237 MPA, and the self-weight of the chain is the most important part of the load. The deformation is 0.1276%, and the load distribution is uneven, and the bearing capacity of most materials is not fully utilized, so there is a lot of optimization design space. Based on the optimization design theory, the structural size of the high efficiency vertical transport device is determined. Firstly, the maximum stress and deformation of the device under different magnification are studied, and the differences among the components are compared. Secondly, according to the variation of size, load, stress and deformation with magnification, an optimal design scheme of transmission chain magnification based on ANSYS design optimization module is established. The optimization results show that 19.5 times magnification based on CHE80 is the most suitable reference for size design, and the optimized model design scheme is put forward according to the optimized load distribution characteristics, and the self-weight of the device is greatly reduced by 86.27%. The maximum stress is controlled at 292 MPA and the maximum deformation is less than or equal to 0.105%. The outward bending trend of the chain can be effectively suppressed. Finally, the topology optimization of the main stress components is carried out to further realize the lightweight of the structure. In order to facilitate the optimization, the specific surface load distribution function of each component is studied, and the contact pressure spatial distribution function is obtained by using mathematical tools to fit the sampled data. Based on the ANSYS topology optimization module, the external chain board and the inner link are optimized respectively. The optimization results show that the quality of outer chain plate, inner chain joint and the whole mass are reduced by 12.95%, 10.46% and 8.81%, respectively, the main performance parameters remain stable, the number of inefficient units is significantly reduced, and the material utilization ratio is obviously improved.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU976.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王鳳;;拓?fù)鋬?yōu)化方法在航空用鈑金零件設(shè)計(jì)中的應(yīng)用[J];航空制造技術(shù);2017年Z1期
2 董俊岐;張芳萍;王婷;李兆萍;曹春花;;論高層建筑的電梯使用效率問題[J];機(jī)械工程與自動化;2016年04期
3 彭細(xì)榮;隋允康;;對連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化合理模型的再探討[J];固體力學(xué)學(xué)報(bào);2016年02期
4 張杰;萬化云;李宗靖;;基于ANSYS的可調(diào)行程液壓缸的活塞桿有限元分析及優(yōu)化[J];液壓與氣動;2016年03期
5 李海龍;孫登月;許石民;周玉林;;重載翻轉(zhuǎn)機(jī)鏈傳動系統(tǒng)動力學(xué)研究[J];機(jī)械傳動;2015年04期
6 徐佳琦;呂西林;;基于工程限值約束的結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計(jì)分析[J];建筑結(jié)構(gòu)學(xué)報(bào);2015年03期
7 韋春丹;顏廷芬;;垂直輸送設(shè)備在冶金工業(yè)領(lǐng)域的應(yīng)用[J];現(xiàn)代冶金;2015年01期
8 倪健健;李文斌;;基于ADAMS的鏈傳動機(jī)構(gòu)的仿真分析[J];中國農(nóng)機(jī)化學(xué)報(bào);2015年01期
9 樊鵬;寇保福;李正;;基于ADAMS的鏈傳動嚙合沖擊仿真研究[J];礦山機(jī)械;2014年12期
10 榮長發(fā);田豐君;;鏈傳動的摩擦學(xué)設(shè)計(jì)分析[J];機(jī)械設(shè)計(jì);2014年04期
相關(guān)博士學(xué)位論文 前2條
1 朱劍峰;結(jié)構(gòu)拓?fù)鋬?yōu)化理論及在轎車副車架開發(fā)中應(yīng)用研究[D];北京理工大學(xué);2015年
2 易繼軍;結(jié)構(gòu)拓?fù)鋬?yōu)化方法研究及其在螺旋錐齒輪機(jī)床中的應(yīng)用[D];中南大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 郭瑞武;某牽引車車架多目標(biāo)拓?fù)鋬?yōu)化設(shè)計(jì)與分析[D];太原理工大學(xué);2016年
2 張志生;船載起重機(jī)臂架有限元分析及優(yōu)化[D];江蘇大學(xué);2016年
3 王尚;考慮載荷大小和方向不確定性的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化[D];大連理工大學(xué);2015年
4 尹艷山;基于變密度法的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化[D];東北大學(xué);2014年
5 趙亮;基于ANSYS鎂合金輪轂的結(jié)構(gòu)優(yōu)化設(shè)計(jì)[D];燕山大學(xué);2013年
6 王永茂;勻速鏈傳動機(jī)構(gòu)關(guān)鍵技術(shù)研究[D];河北工業(yè)大學(xué);2013年
7 冉紹伯;鏈傳動動態(tài)特性參數(shù)測試及實(shí)驗(yàn)研究[D];西南交通大學(xué);2011年
8 李好;基于變密度法的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化方法研究[D];華中科技大學(xué);2011年
9 張玲玲;鏈傳動速度波動測試裝置開發(fā)與鏈傳動多邊形效應(yīng)的實(shí)驗(yàn)研究[D];西南交通大學(xué);2010年
10 熊瑞庭;基于模糊神經(jīng)網(wǎng)絡(luò)的電梯故障診斷系統(tǒng)的研究[D];武漢理工大學(xué);2009年
,本文編號:2488007
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2488007.html