天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 建筑工程論文 >

基于砂箱模型試驗(yàn)的肋板式擋土墻穩(wěn)定性及破壞模式研究

發(fā)布時(shí)間:2019-05-23 13:33
【摘要】:支擋結(jié)構(gòu)是巖土工程的一個(gè)重要組成部分。隨著我國(guó)經(jīng)濟(jì)建設(shè)與基礎(chǔ)設(shè)施的快速發(fā)展,對(duì)于復(fù)雜地質(zhì)條件下支擋結(jié)構(gòu)提出了更高要求,許多采用錨固技術(shù)、加筋土技術(shù)、懸臂結(jié)構(gòu)以及組合結(jié)構(gòu)等多種輕型的支擋結(jié)構(gòu)開始廣泛應(yīng)用。肋板式擋土墻是一種由墻面板、肋板及肋板間土體組成的新型支擋結(jié)構(gòu),依靠伸入穩(wěn)定區(qū)土體的肋板與肋板間土體的摩擦作用來平衡作用在面板上土壓力。其主要特點(diǎn)是充分利用墻后土體的自穩(wěn)定性、對(duì)邊坡土體擾動(dòng)小、地基承載力要求不高,結(jié)構(gòu)簡(jiǎn)單等。目前,肋板式擋土墻的受力變形特征、破壞模式及穩(wěn)定機(jī)理等尚不明確,未建立相應(yīng)的設(shè)計(jì)計(jì)算方法。在總結(jié)和分析已有的擋土墻研究成果基礎(chǔ)上,通過室內(nèi)小型砂箱模型試驗(yàn),探究紙質(zhì)柔性面板肋板式擋墻模型與有機(jī)玻璃剛性面板肋板式擋墻模型兩種面板類型肋板式擋墻穩(wěn)定性的影響因素。重點(diǎn)分析肋板式擋土墻肋板間距和肋板長(zhǎng)度兩個(gè)主要結(jié)構(gòu)參數(shù)對(duì)墻體穩(wěn)定性的影響,并得到相應(yīng)的合理布置方式。另外,試驗(yàn)研究了肋板式擋土墻破壞模式及破裂面的位置與形態(tài),初步得到以下結(jié)論:(1)肋板式擋土墻是以肋板為主要錨固體、面板為擋土體,依靠肋板與填土間摩擦作用來平衡墻面板土壓力的一種新型支擋結(jié)構(gòu)。室內(nèi)砂箱模型試驗(yàn)表明,肋板間距和長(zhǎng)度是影響肋板式擋土墻穩(wěn)定性的兩個(gè)關(guān)鍵因素。(2)采用長(zhǎng)750mm、寬500mm、高500mm的膠合木板模型箱,以350g/m2白卡紙作為墻面板、800g/m2雙灰紙作為肋板以及石英砂作為填料開展了柔性面板下砂箱模型試驗(yàn)。試驗(yàn)表明,受面板剛度低的影響,作用在墻面板的土壓力使墻面板產(chǎn)生較大的局部變形,隨肋板間距增大而更為顯著,對(duì)擋土墻的自穩(wěn)不利。極限穩(wěn)定狀態(tài)下長(zhǎng)肋疏布布置方式所需的肋板面積較大,受最小肋板長(zhǎng)度的限制,短肋密布方式所需肋板面積也隨肋板間距變小而增大,因此,肋板處于長(zhǎng)肋疏布與短肋密布方式過渡區(qū)的布置方式所需肋板面積較小,為最優(yōu)布置方式。(3)選用長(zhǎng)750mm、寬500mm、高500mm的有機(jī)玻璃板模型箱,以有機(jī)玻璃板作為墻面板、800g/m2雙灰紙作為肋板以及粉細(xì)砂作為填料開展了剛性面板砂箱模型試驗(yàn)。試驗(yàn)表明,砂箱邊壁的邊界效應(yīng)不顯著,可視為對(duì)稱面,肋板間距為最外側(cè)肋板至砂箱邊壁距離的兩倍的等間距布置方式為合理的布置方式,即對(duì)稱面布置法,較等間距布置法更為合理。剛性面板肋板式擋土墻的穩(wěn)定性受面板自身剛度影響較小,可以充分發(fā)揮肋板與土體的摩擦作用,在極限穩(wěn)定狀態(tài)下,長(zhǎng)肋疏布方式所需肋板面積最小。(4)利用長(zhǎng)800mm、寬600mm、高600mm的鋼制模型箱,制作300mm墻高有機(jī)玻璃材質(zhì)肋板式擋土墻模型,以標(biāo)準(zhǔn)砂作為墻后填料開展了 4組砂箱模型試驗(yàn)。經(jīng)過離心加載后,給予肋板式擋土墻足夠位移使擋墻產(chǎn)生破壞,觀察內(nèi)部破裂面的位置及形態(tài)。在肋板式擋土墻水平位移較大時(shí),推墻試驗(yàn)使肋板式擋土墻破壞等效于無人為外力影響下?lián)跬翂ψ陨硎Х(wěn)破壞,驗(yàn)證了隨著肋板間距由疏至密的變化,在極限穩(wěn)定狀態(tài)下,肋板式擋土墻存在兩種典型的力學(xué)作用模式:間距較大時(shí),依靠肋板與穩(wěn)定區(qū)土體摩擦效應(yīng)提供錨固力平衡墻面板土壓力,為長(zhǎng)肋疏布的摩擦錨固型破壞模式,極限狀態(tài)下的破裂面位于肋間土內(nèi);間距較小時(shí),肋間土受到相鄰肋板較強(qiáng)的摩擦約束,形成整體土墻,類似于利用墻體自重達(dá)到穩(wěn)定的重力式擋土墻,為短肋密布的整體土墻型破壞模式,破壞時(shí)破裂面位于假想墻背后側(cè)土體。
[Abstract]:The supporting structure is an important part of the geotechnical engineering. With the rapid development of the economic construction and the infrastructure of our country, it has put forward a higher requirement for the support structure under the complex geological conditions, and many kinds of light supporting structures, such as the anchoring technology, the reinforced earth technology, the cantilever structure and the combined structure, are widely used. The rib-type retaining wall is a new type of supporting structure composed of a wall panel, a rib plate and a soil body between the rib plates, and the soil pressure acting on the panel is balanced by the friction between the rib of the soil body extending into the stable region and the rib plate. The method is mainly characterized in that the self-stability of the soil body after the wall is fully utilized, the soil disturbance of the side slope is small, the bearing capacity of the foundation bearing is not high, the structure is simple, and the like. At present, the stress deformation characteristics, the failure mode and the stability mechanism of the rib-type retaining wall are not clear, and the corresponding design calculation method is not established. Based on the summary and analysis of the existing retaining wall research results, the influence factors of the paper flexible panel rib plate retaining wall model and the plate type rib plate retaining wall model of the plexiglass rigid panel rib plate type retaining wall model are investigated through the indoor small sand box model test. The influence of two main structural parameters of rib-plate retaining wall and rib length on the stability of the wall is analyzed, and the corresponding reasonable arrangement is obtained. in addition, that failure mode of the rib-plate retaining wall and the position and shape of the rupture surface are studied, and the following conclusions are obtained: (1) the rib-type retaining wall is a solid with the rib plate as the main anchor, and the panel is a soil-retaining soil body; A new type of support structure is used to balance the soil pressure of the wall panel by means of the friction between the rib and the fill. The model test of the indoor sand box shows that the spacing and length of the rib are two key factors that influence the stability of the rib-type retaining wall. (2) The model test of the sand box under the flexible panel was carried out by using 350 g/ m2 of white cardboard as the wall panel,800 g/ m2 of double-ash paper as the rib and quartz sand as the filler, using a glued wood board model box of 750 mm long,500 mm wide and 500 mm high. The test shows that under the influence of low stiffness of the panel, the soil pressure acting on the wall panel causes the wall panel to generate large local deformation, which is more obvious with the increase of the rib spacing, and the self-stability of the retaining wall is unfavorable. the rib area required by the long-rib-thinning arrangement mode in the limit-stable state is large, is limited by the length of the minimum rib, the area of the rib required for the short-rib-densely-densely distributed mode also increases with the spacing of the rib, and therefore, The rib plate is in the arrangement mode of the long-rib sparse cloth and the short-rib dense mode transition area, and the required rib area is small, and is an optimal arrangement mode. (3) An organic glass plate model box with a length of 750 mm, a width of 500 mm and a height of 500 mm is selected, and a rigid panel sand box model test is carried out by using an organic glass plate as a wall panel,800 g/ m2 of double-ash paper as a rib and fine sand as a filler. The test shows that the boundary effect of the side wall of the sand box is not significant, it can be regarded as the symmetrical surface, and the spacing between the rib and the side wall of the sand box is two times the distance of the side wall of the sand box. The stability of the rigid panel rib plate retaining wall is less affected by the self-rigidity of the panel, and the friction effect of the rib and the soil body can be fully exerted, and the floor area of the long-rib-rib-type retaining wall is the smallest under the limit-stable state. (4) Using a steel model box with a length of 800 mm, a width of 600 mm and a height of 600 mm, a plate-type retaining wall model of a 300-mm high-glass-glass material was fabricated, and a four-group sand box model test was carried out with the standard sand as a post-wall filler. After the centrifugal loading, enough displacement of the rib-type retaining wall is given to cause the retaining wall to be damaged, and the position and the shape of the internal rupture surface are observed. when the horizontal displacement of the rib-type retaining wall is large, the wall-pushing test results in that the failure of the rib-type retaining wall is equivalent to the self-buckling failure of the retaining wall under the influence of no external force, There are two typical mechanical action modes of the rib-type retaining wall: when the distance is large, the soil pressure of the anchor force balance wall panel is provided by the friction effect of the rib and the stability area soil, the friction-anchoring type failure mode of the long-rib sparse cloth is long, and the fracture surface in the limit state is located in the intercostal soil; The spacing is small, and the intercostal soil is restrained by the friction of the adjacent rib plates to form a whole body, which is similar to the gravity-type retaining wall which is stabilized by the self-weight of the wall body, and is an integral abrasion-type failure mode with densely distributed short ribs, and the fracture surface is positioned on the back side soil body behind the virtual wall.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU476.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 姚陽;羅強(qiáng);謝濤;張玉廣;張良;蔣良濰;;基于砂箱模型試驗(yàn)的肋板式擋墻穩(wěn)定性及合理布置方式分析[J];鐵道科學(xué)與工程學(xué)報(bào);2016年08期

2 孟慶宇;張宏博;岳紅亞;孫潤(rùn)生;;錨拉式擋土墻沉降力學(xué)特性模型試驗(yàn)研究[J];公路;2016年03期

3 張宏博;孟慶宇;岳紅亞;厲超;;對(duì)拉式擋土墻側(cè)向土壓力分布規(guī)律試驗(yàn)研究[J];公路;2016年02期

4 于一凡;張宏博;宋修廣;;重載交通下錨拉懸臂式擋土墻受力特性研究[J];公路;2015年07期

5 宋修廣;吳建清;張宏博;張思峰;于一凡;;對(duì)拉式擋土墻受力特性試驗(yàn)研究[J];鐵道建筑;2014年09期

6 楊廣慶;;加筋擋土墻合理設(shè)計(jì)方法的探討[J];長(zhǎng)江科學(xué)院院報(bào);2014年03期

7 黃治云;張永興;董捷;;樁板墻土拱效應(yīng)及土壓力傳遞特性試驗(yàn)研究[J];巖土力學(xué);2013年07期

8 胡俊強(qiáng);張永興;陳林;陳建功;;非極限狀態(tài)擋土墻主動(dòng)土壓力研究[J];巖土工程學(xué)報(bào);2013年02期

9 周健;高冰;彭述權(quán);;不同位移模式下?lián)跬翂Φ哪P驮囼?yàn)及數(shù)值模擬[J];巖石力學(xué)與工程學(xué)報(bào);2011年S2期

10 劉新榮;梁寧慧;黃金國(guó);鐘和平;;抗滑樁在邊坡工程中的研究進(jìn)展及應(yīng)用[J];中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào);2006年01期

相關(guān)博士學(xué)位論文 前2條

1 李浩;高速鐵路無砟軌道路肩樁板墻側(cè)向位移特征及狀態(tài)控制設(shè)計(jì)方法研究[D];西南交通大學(xué);2015年

2 陳頁開;擋土墻上土壓力的試驗(yàn)研究與數(shù)值分析[D];浙江大學(xué);2001年

相關(guān)碩士學(xué)位論文 前2條

1 王廣軍;樁板墻工程土拱效應(yīng)及合理樁間距研究[D];西南交通大學(xué);2006年

2 龔慈;不同位移模式下剛性擋土墻土壓力計(jì)算方法研究[D];浙江大學(xué);2005年

,

本文編號(hào):2483938

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2483938.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e14de***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
av免费视屏在线观看| 日韩人妻毛片中文字幕| 亚洲av首页免费在线观看| 国内胖女人做爰视频有没有| 色哟哟在线免费一区二区三区| 中文字幕日产乱码一区二区| 日本精品最新字幕视频播放| 国产剧情欧美日韩中文在线| 麻豆精品视频一二三区| 亚洲中文字幕三区四区| 国产精品蜜桃久久一区二区| 人妻巨大乳一二三区麻豆| 欧美性高清一区二区三区视频 | 欧美日韩国产另类一区二区 | 亚洲天堂精品一区二区| 色婷婷在线精品国自产拍| 一区二区三区四区亚洲专区| 欧美国产日韩在线综合| 在线观看视频日韩精品| 日本午夜福利视频免费观看| 国产91麻豆精品成人区| 午夜午夜精品一区二区| 成在线人免费视频一区二区| 国产精品不卡免费视频| 国产在线日韩精品欧美| 国产又粗又猛又黄又爽视频免费| 亚洲欧美日韩中文字幕二欧美| 久久精品国产99国产免费| 樱井知香黑人一区二区| 午夜精品在线观看视频午夜| 精品视频一区二区不卡| 日本东京热加勒比一区二区| 丰满少妇被猛烈插入在线观看| 老富婆找帅哥按摩抠逼视频| 国产精品大秀视频日韩精品| 91麻豆精品欧美视频| 久久99爱爱视频视频| 国产日韩久久精品一区| 亚洲高清欧美中文字幕| 国产av乱了乱了一区二区三区| 国产一区二区三区草莓av|